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This thesis deals with the model theory of two kinds of lattice-ordered algebraic
structures arising naturally in real algebraic geometry, both of which are understood
within the context of real closed rings in the sense of Niels Schwartz.

The first such structure is the set Cs.a.(X) of continuous semi-algebraic functions
on a semi-algebraic curve X ⊆ Rm over real closed field R regarded as a lattice-ordered
module over itself. The model-theoretic analysis of Cs.a.(X) is carried by an adaptation
of the two-sorted machinery developed by Fuxing Shen and Volker Weispfenning in
their study of first-order properties of lattice-ordered abelian groups of functions in
terms of their lattices of zero sets. The lattice-ordered module Cs.a.(X) is enriched with
a sort for its lattice of zero sets LX (the space sort), a sort for a real closed valuation
ring OR (the germ sort), and suitable maps connecting these sorts. It is shown that
the resulting three-sorted structure eliminates quantifiers relative to the space and
germ sorts, from which it follows that every first-order property of the lattice-ordered
module Cs.a.(X) is equivalent to a Boolean combination of first-order properties of LX
and OR. Under the additional hypothesis that R is a recursive real closed field, this
equivalence is effective, from which decidability of the theory of the lattice-ordered
module Cs.a.(X) is obtained.

The second class of structures is that of n-fold fibre products of non-trivial real
closed valuation rings along surjective maps onto a fixed domain D. For a fixed n ≥ 2,
this class splits into two subclasses, called in this thesis rings of type (n, 1) and of type
(n, 2) according to whether D is a field or not (respectively). Geometric examples
of rings of type (n, 1) are rings of germs of Cs.a.(X) at a point a ∈ X, where X is
a semi-algebraic curve as above. It is shown that these two classes admit a simple
axiomatization in the language of rings and their basic model-theoretic properties are
established, namely, completeness, decidability, and NIP, as well as model complete-
ness and quantifier elimination in suitable enrichments of the language of rings. These
model-theoretic results rest on a structure theorem proved for reduced local SV-rings
of finite rank which explicitly describes them as finite iterated fibre products of non-
trivial valuation rings along surjective ring homomorphisms, as well as on equivalent
descriptions of branching ideals in local real closed rings of finite rank. The algebraic
and model-theoretic study of of rings of type (n, 1) and of type (n, 2) is framed within
the larger class of local real closed SV-rings of finite rank, and the results obtained in
this thesis pave the way toward a uniform model-theoretic treatment of these latter
rings in terms of their branching spectra.
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Chapter 1

Introduction

A lattice is here understood to be a partially ordered set (L,≤) such that the supremum

a ∨ b and the infimum a ∧ b of every pair of elements a, b ∈ L with respect to ≤ exist

in L. Lattices are ubiquitous algebraic and ordered structures which appear in diverse

areas of mathematics such as topology, algebra, and logic.

This thesis contributes to the model-theoretic analysis (that is, the study of first-

order logical properties) of certain algebraic structures arising in real algebraic geome-

try which carry a lattice order compatible with their underlying algebraic operations,

namely:

• The lattice-ordered module Cs.a.(X) (over itself) of continuous semi-algebraic

functions X −→ R on a one-dimensional semi-algebraic subset X ⊆ Rm without

isolated points over a real closed field R. This is the content of Chapter 3.

• Local real closed SV-rings of finite rank; equivalently (Theorem 4.4.2), finite

iterated fibre products of non-trivial real closed valuation rings along surjective

ring homomorphisms onto domains. This is the content of Chapter 4.

Cs.a.(X) can also be regarded as a ring with pointwise addition and multiplication

of functions. In particular, a first connection between the content of Chapters 3 and 4

is that both the ring Cs.a.(X) and local real closed SV-rings of finite rank are particular

examples of real closed rings in the sense of Niels Schwartz. Real closed rings are a

class of lattice-ordered rings introduced by Schwartz in [Sch89] (see also [Sch87]) to

serve as rings of global sections of affine real closed spaces, the latter being analogues

of Grothendieck’s affine schemes in the context of real algebraic geometry.

9



CHAPTER 1. INTRODUCTION 10

A second and less obvious point in common between Chapters 3 and 4 is that the

ring of germs of functions f ∈ Cs.a.(X) at a point a ∈ X (that is, the localization of

the ring Cs.a.(X) the maximal ideal ma := {f ∈ Cs.a.(X) | f(a) = 0}) is a local real

closed SV-ring of finite rank. More precisely, if n is the number of half-branches of

the curve X at a, then the ring of germs Cs.a.(X)ma is isomorphic to the n-fold fibre

product (((OR ×R OR) ×R . . . ) ×R OR), where OR is the ring of germs of function

f ∈ Cs.a.(X) at a half-branch of X, see Corollary 2.3.37 and Example 4.4.9.

The third and last common feature of Chapters 3 and 4 is that both use the well

known model-theoretic properties of real closed valuation rings established by Cherlin

and Dickmann in [CD83] for the analysis of the first-order properties of the structures

dealt with in each chapter. That such analysis can be done in this way is witnessed

algebraically by the fact that both the ring Cs.a.(X) and local real closed SV-rings

of finite rank admit a sheaf representation on a spectral space whose stalks are real

closed valuation rings, see [Sch91].

The model-theoretic analysis of the lattice-ordered structures dealt with in this

thesis is motivated by the following:

Question. Let S ⊆ Rm be a semi-algebraic subset. Does the real closed ring Cs.a.(S)

of continuous semi-algebraic functions S −→ R have a decidable first-order theory

when S is of dimension 1?

The question above arises from the decidability and non-decidability results in the

literature of various theories Th(A) in the language of rings of real closed rings A of

functions S −→ R, namely:

(i) Th(A) is decidable if A is the ring of all functions S −→ R by the Feferman-

Vaught theorem in [FV59].

(ii) Th(A) is decidable if A is the ring of all semi-algebraic functions S −→ R by

Astier’s [Ast08, Theorem 1].

(iii) Th(A) is undecidable if S has non-empty interior and A is the ring of all contin-

uous functions S −→ R by Cherlin’s [Che80, Theorem I].

(iv) Th(A) is undecidable if S is semi-algebraically connected of constant local di-

mension at least 2 and A is the ring of all continuous semi-algebraic functions
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S −→ R by [DT20, Theorem 6.7].

The results obtained in this thesis contribute to the above question by showing

that if R is a real closed field and X ⊆ Rm is semi-algebraic of dimension 1, then

(a) If R is a recursive real closed field, then the theory of the lattice-ordered module

Cs.a.(X) over itself is decidable, see Proposition 3.5.3 (ii).

(b) The theory of the ring of germs of functions f ∈ Cs.a.(X) at any point a ∈ X is

decidable, see Example 4.4.9 and Corollary 4.5.28.

1.1 Structure of the thesis

Chapter 2 contains all background material needed for Chapters 3 and 4. Most of the

results in Chapter 2 are required preliminaries for Chapter 3, while only the content in

Section 2.3 is a required preliminary for Chapter 4. In particular, the essential back-

ground material for Chapter 3 is Subsection 2.4.3 on the Shen-Weispfenning theorem

for lattice-ordered abelian groups of functions.

Chapters 3 and 4 can be read independently. The introductions in Sections 3.1

and 4.1 explain the algebraic and model-theoretic context and set-up of the contents

of Chapters 3 and 4, respectively, as well as the structure within each chapter and a

summary of the main results obtained.

1.2 General conventions and notation

(I) All rings are commutative and unital, and all ring homomorphisms preserve the

multiplicative unit. The category of rings together with ring homomorphisms is

denoted by CRing.

(II) A partially ordered ring (poring for short) is a ring A equipped with a partial

order ≤ such that for all a, b, c ∈ A, if a ≤ b then a + c ≤ b + c, and if 0 ≤ a, b

then 0 ≤ ab.

(III) If A is a domain, then qf(A) is the quotient field of A.

(IV) If A is a partially ordered group, set A≥0 := {a ∈ A | a ≥ 0}.
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(V) If f : X −→ N is any function, then im(f) is its image and f↾S the restriction

of f to S ⊆ X.

(VI) N is the set of positive integers and N0 := N ∪̇ {0} = ω.

(VII) If n ∈ N, then [n] := {1, . . . , n}.

(VIII) If X is any set, then P(X) is the power set of X.

(IX) ∨∨ and ∧∧ denote logical disjunction and conjunction, respectively.

1.2.1 Prerequisites

In this thesis it is assumed familiarity with the following areas of mathematics:

• First-order model theory ([Mar02], [CK90], and [Hod93]).

• Semi-algebraic geometry and o-minimality ([BCR98], [Dri98], and [PS86]).

• Commutative algebra ([AM69] and [MR89]).

Some working knowledge of basic categorical notions such as pullback or functor

is also assumed; for such notions a standard reference is [Mac98]. The level of depth

assumed in the areas above is that of an introductory graduate-level course. The reader

is referred to the aforementioned sources for details on any notion corresponding to one

of the these areas which appears undefined in this thesis, such as model completeness,

semi-algebraic function, or prime ideal.



Chapter 2

Preliminaries

The central classes of lattice-ordered algebras that are dealt with in this thesis are

real closed rings and lattice-ordered abelian groups. As such, one may divide the four

sections of this chapter in:

• Main sections: real closed rings (Section 2.3) and lattice-ordered abelian groups

(Section 2.4).

• Secondary sections: model theory (Section 2.1) and spectral spaces (Section 2.2).

Sections 2.3 and 2.4 can be read independently of each other, and these two main

sections both make use of part of the theory presented in the secondary sections. The

extent to which Sections 2.1 and 2.2 are secondary will be clear from the outline of

the content of this chapter that now follows.

Section 2.1 on model theory deals with two separate topics. The first one is that of

relative quantifier elimination. This syntactic property of multi-sorted theories is the

key notion needed to formalize two of the main theorems in this thesis, namely, the

Shen-Weispfenning theorem on lattice-ordered groups of functions (Subsection 2.4.3),

and the main theorem of Chapter 3, whose proof builds on the ideas behind the

proof of the Shen-Weispfenning theorem. The second topic is that of recursive model

theory, which deals with the effective content of model-theoretic constructions. This

is included in order to set-up the right framework to obtain decidability results from

the two aforementioned theorems. Here an important distinction is made between

the theory of a structure being decidable and the structure itself being decidable, the

latter being a crucial ingredient for the decidability results in Chapter 3.

13
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The role that spectral spaces play in this thesis is that of being spaces X on which

both real closed rings and lattice-ordered abelian groups can be represented as algebras

of functions X −→ N for a suitable choice of totally ordered structure N . Section

2.2 introduces all the required notation and terminology on spectral spaces that is

needed to use such functional representations in order to apply the Shen-Weispfenning

theorem to the additive group reduct of a real closed ring and to an arbitrary divisible

lattice-ordered abelian group.

Section 2.3 contains all the relevant background on real closed rings needed for the

development of both Chapters 3 and 4. Here a particular emphasis is made on real

closed valuation rings for two reasons: a particular real closed valuation ring is used

to obtain the relative quantifier elimination statement of Chapter 3 (namely, the ring

of germs of continuous semi-algebraic functions on a semi-algebraic curve at a half-

branch, see Subsection 2.3.2), and real closed valuation rings are used to construct the

class of real closed rings which is dealt with in Chapter 4.

Lattice-ordered abelian groups are introduced in Section 2.4 just to the extent

needed to contextualize and prove the Shen-Weispfenning theorem in Subsection 2.4.3.

The core of this section is in fact the content in Subsection 2.4.3, since it serves as a

basic template for the set-up and proof of the main theorem in Chapter 3.

Most of the material in this chapter is folklore and well known. Those results which

do not appear in the literature or which are of difficult access include a proof.

2.1 Model theory

Fix the following conventions, notation, and terminology which will be used throughout

this section:

(I) Every language L is a (possibly multi-sorted) first-order language.

(II) Constant symbols c ∈ L are regarded as 0-ary function symbols.

(III) The interpretation in an L -structure M of a non-logical symbol or a sort in L

will be indicated with the superscript notation (−)M whenever this is needed.

(IV) If L is a language, then L -Fml is the set of all L -formulas.
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(V) An L -theory is1 a consistent and deductively closed set of L -sentences.

(VI) If M is an L -structure, then an L -formula φ(x) is equivalent to ψ(x) modulo

M if M |= ∀x(φ(x) ↔ ψ(x)). If T is an L -theory, then an L -formula φ(x) is

equivalent to ψ(x) modulo T if φ(x) is equivalent to ψ(x) modulo every M |= T ;

equivalently, T ⊢ ∀x(φ(x) ↔ ψ(x)).

2.1.1 Relative quantifier elimination

Familiarly with basic many-sorted model theory is assumed for this subsection (see

for instance Appendix B in [ADH17]), but all the relevant notions will be recalled

as required. A simple example of a two-sorted structure to have in mind for this

subsection and which will be particularly relevant for Section 2.4 and Chapter 3 is the

following: the group RR of all functions R −→ R under pointwise addition together

with the “valuation-like” map RR −→ P(R) to the Boolean algebra P(R) given by

f 7→ {x ∈ R | f(x) = 0}, where one sort is the group RR and the other sort is the

Boolean algebra P(R).

Much of the material of this subsection is contained in [Rid14, Chapter II, Appendix

A].

Throughout this subsection, L is a multi-sorted language with partition

of sorts Π ∪̇ Σ and T is an L -theory.

For what follows, recall that every function and relation symbol in the multi-

sorted language L is equipped with a sort (cf. [ADH17, Appendix B1 - B4]): if

f ∈ L is a function symbol, then the sort of f is a tuple of sorts (S1, . . . , Sm, Sm+1)

such that fM is a function SM
1 × . . .× SM

m −→ SM
m+1 for every L -structure M (and

thus f is in particular an m-ary function symbol), and the sort of a relation symbol

is defined analogously. Similarly, every variable is equipped with a unique single

sort, and given φ(x1, . . . , xn) ∈ L -Fml, the sort of φ(x1, . . . , xn) is the tuple of sorts

(S1, . . . , Sn), where Si is the sort of xi for all i ∈ [n]; for instance, if f is a function

1This definition of a theory strays away from the standard model-theoretic definition of a theory
(that is, that an L -theory is just a set of L -sentences). The assumption that theories in this thesis are
consistent and deductively closed is used when discussing matters of recursiveness and decidability;
this is in accordance to the literature in recursive model theory, see [Rab77, Subsection 1.1] or [Har98,
Section 2].
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symbol of sort (S1, . . . , Sm, Sm+1), then the formula f(x1, . . . , xm) = xm+1 is of sort

(S1, . . . , Sm, Sm+1).

Definition 2.1.1. (i) A function symbol in L is Σ-sorted (Π-sorted) if it is of sort

(S1, . . . , Sm, Sm+1) with Si ∈ Σ (Si ∈ Π) for all i ∈ [m + 1]; a Σ-sorted relation

symbol in L is defined analogously, and a variable x is a Σ-variable (Π-variable)

if x is of sort S for some S ∈ Σ (S ∈ Π). Write L↾Σ (L↾Π) for the restriction of

L to Σ-sorted (Π-sorted) function and relation symbols.

(ii) The Morleyization of L on Σ is the language

L Σ-Mor := L ∪̇ {Rφ(x) | φ(x) ∈ L↾Σ-Fml},

where Rφ(x) is a new relation symbol of sort (S1, . . . , S|x|) for each φ(x) ∈

L↾Σ-Fml of sort (S1, . . . , S|x|).

(iii) The Morleyization of T on Σ is the L Σ-Mor-theory

TΣ-Mor := T ∪̇ {∀x(Rφ(x) ↔ φ(x)) | φ(x) ∈ L↾Σ-Fml}.

(iv) T eliminates quantifiers relative to Σ if TΣ-Mor has quantifier elimination, that

is, if every L Σ-Mor-formula is equivalent modulo TΣ-Mor to a formula without

quantifiers; if Σ = {S}, then say that T eliminates quantifiers relative to S.

(v) T eliminates Π-quantifiers if every L -formula is equivalent modulo T to a for-

mula without Π-quantifiers; if Π = {S}, then say that T eliminates S-quantifiers.

Remark 2.1.2. If T eliminates quantifiers relative to Σ, then T eliminates Π-quantifiers.

Indeed, let φ(x, y) be an L -formula (where x are Π-variables and y are Σ-variables);

then φ(x, y) is also an L Σ-Mor-formula, therefore by assumption there exists an L Σ-Mor-

formula φ1(x, y) without quantifiers which is equivalent to φ(x, y) modulo TΣ-Mor. Let

φ2(x, y) be the L -formula obtained by replacing every atomic L Σ-Mor-subformula of

φ1(x, y) of the form Rθ(z, y) (where θ(z, y) is an L↾Σ-formula) by θ(z, y); then φ2(x, y)

is an L -formula without Π-quantifiers which is equivalent to φ(x, y) modulo T .

Definition 2.1.3 (Definition II.A.7 in [Rid14]). The set of sorts Σ is closed (in L )

if L \ (L↾Π ∪̇ L↾Σ) is either empty or it consists only of function symbols f of sort

(S1, . . . , Sm, Sm+1) with m ∈ N, Si ∈ Π for all i ∈ [m], and Sm+1 ∈ Σ. If Σ is closed,

define FΣ := L \ (L↾Π ∪̇ L↾Σ).
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Loosely speaking, if Σ is closed, then the only interaction between the sorts in Π

and the sorts in Σ is via function symbols in

FΣ = {f ∈ L | f is a function symbol of sort (S1, . . . , Sm, Sm+1)

with m ∈ N, Si ∈ Π for all i ∈ [m], and Sm+1 ∈ Σ}.

Remark 2.1.4. Σ is closed if and only if the following conditions hold:

(i) if f ∈ L is a function symbol of sort (S1, . . . , Sm, Sm+1) with m ∈ N such that

Sm+1 ∈ Π, then Si ∈ Π for all i ∈ [m];

(ii) if f ∈ L is a function symbol of sort (S1, . . . , Sm, Sm+1) with m ∈ N such that

Sm+1 ∈ Σ and there exists i ∈ [m] such that Si ∈ Σ, then Si ∈ Σ for all i ∈ [m];

and

(iii) if R ∈ L is a relation symbol of sort (S1, . . . , Sn) and there exists i ∈ [n] such

that Si ∈ Σ, then Si ∈ Σ for all i ∈ [n].

Remark 2.1.5. If Σ is closed, then any atomic L -formula φ(x, y) (where x are Π-

variables and y are Σ-variables) is of the form

(i) ψ(x) for some atomic L↾Π-formula ψ(x), or

(ii) θ(f1(u1(x)), . . . , fr(ur(x)), y), where θ(z1, . . . , zr, y) is an atomic L↾Σ-formula,

and for all i ∈ [r], ui(x) is a tuple of L↾Π-terms and fi is a function symbol in

FΣ of the appropriate sort.

Lemma 2.1.6. Suppose that Σ is closed. If FΣ = ∅, then every L -formula is equiv-

alent to a Boolean combination of L↾Π-formulas and L↾Σ-formulas.

Proof. By writing L -formulas in prenex normal form2 and inducting over quantifiers,

it suffices to show that the L -formula ∃z
∨∨m

i=1

∧∧n
j=1 φi,j(x, y, z) is equivalent to a

Boolean combination of L↾Π-formulas and L↾Σ-formulas, where z is either a Π-variable

or a Σ-variable, and each φij(x, y, z) is an atomic L -formula such that x are Π-

variables and y are Σ-variables. Assume without loss of generality that z is a Σ-

variable; since Σ is closed, FΣ = ∅ together with Remark 2.1.5 imply that φij(x, y, z)

2The proof that every formula in a multi-sorted language is equivalent to a formula in prenex
normal form (i.e., a formula consisting of a possibly empty string of quantifiers followed by a quantifier-
free formula) is analogous to the one-sorted case.
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is either an atomic L↾Π-formula φij(x) or an atomic L↾Σ-formula φij(y, z) for all

i ∈ [m] and for all j ∈ [n], therefore it can be assumed that for each i ∈ [m] there

exists ni ∈ [n] such that φij(x, y, z) is an atomic L↾Π-formula φij(x) for all j ∈ [ni]

and φij(x, y, z) is an atomic L↾Σ-formula φij(y, z) for all j ∈ {ni+1, . . . , n}. It is clear

that
m∨∨
j=1

(
ni∧∧
i=1

φij(x) ∧∧

(
∃z

n∧∧
i=ni+1

φij(y, z)

))
is a formula equivalent to the original one and that it is in the required form.

Lemma 2.1.7 (Remark II.A.8.3 in [Rid14]). Suppose that Σ is closed. Then T elim-

inates Π-quantifiers if and only if T eliminates quantifiers relative to Σ.

Proof. One implication follows by Remark 2.1.2, so suppose that T eliminates Π-

quantifiers. By writing L Σ-mor-formulas in prenex normal form and inducting over

quantifiers, it suffices to eliminate quantifiers in formulas of the form ∃yφ(x, y) and

∃xφ(x, y), where φ(x, y) is a quantifier-free L Σ-Mor-formula, x are Π-variables, and y

are Σ-variables.

Since Σ is closed, it can be assumed by Remark 2.1.5 that each atomic subformula

of φ(x, y) is of the form

(i) ψ(x) for some atomic L↾Π-formula ψ(x), or

(ii) Rθ(f1(u1(x)), . . . , fr(ur(x)), y), where θ, fi, and ui are as in Remark 2.1.5 (ii);

in particular, it can be assumed that φ(x, y) is a finite conjunction of formulas of the

form as in items (i) and (ii) above. Let Rθ1(f(u(x)), y), . . . , Rθn(f(u(x)), y) be a com-

plete list of all atomic subformulas of φ(x, y) of the form as in item (ii) above, and let

φ′(x) be the L Σ-Mor-formula defined by replacing the subformula
∧∧n

i=1Rθi(f(u(x)), y)

of φ(x, y) by R∃y
∧∧n

i=1 θi
(f(u(x)); then φ′(x) is a quantifier-free L Σ-Mor-formula equiv-

alent to ∃yφ(x, y) modulo TΣ-Mor.

Let φ1(y) be an L -formula equivalent to ∃xφ(x, y) modulo TΣ-Mor (this exists since

TΣ-Mor is an extension of T by definitions). By assumption, there exists an L -formula

φ2(y) without Π-quantifiers which is equivalent to φ1(y) modulo T , therefore φ2(y) is

an L Σ-Mor-formula without Π-quantifiers equivalent to ∃xφ(x, y) modulo TΣ-Mor; by

the above, φ2(y) is equivalent to a quantifier-free L Σ-Mor-formula modulo TΣ-Mor, and

this concludes the proof.
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This section concludes with a syntactic test for relative quantifier elimination, see

Proposition 2.1.9. The proof idea is essentially a generalization of the proof of the

main theorem in [SW87a].

Lemma 2.1.8. Suppose that Σ is closed and that every atomic L↾Π-formula ψ(x) is

equivalent modulo T to an L -formula of the form θ(f1(u1(x)), . . . , fr(ur(x))), where

θ(z1, . . . , zr) is an atomic L↾Σ-formula, and for all i ∈ [r], ui(x) is a tuple of L↾Π-

terms and fi is a function symbol in FΣ of the appropriate sort. Then every L -

formula φ(x, y) without Π-quantifiers (where x are Π-variables and y are Σ-variables)

is equivalent modulo T to a formula of the form

∃z

(
γ(z, y) ∧∧

m∧∧
i=1

zi = fi(ui(x))

)
, (�)

where γ(z, y) is an L↾Σ-formula, and for all i ∈ [m], ui(x) is a tuple of L↾Π-terms

and fi is a function symbol in FΣ of the appropriate sort. Moreover, if φ(x, y) is an

existential formula3, then the resulting equivalent formula in (�) is also existential.

Proof. Let φ(x, y) be an L -formula without Π-quantifiers. By writing φ(x, y) in

prenex normal form, it may be assumed that φ(x, y) is of the form

Q1v1 . . . Qnvnγ1(x, y, v) (2.1)

where γ1(x, y, v) is a Boolean combination of atomic L -formulas, and for all i ∈ [n],

Qi is either ∀ or ∃, and vi is a Σ-variable. By Remark 2.1.5 and by assumption, (2.1)

is equivalent modulo T to a formula of the form

Q1v1 . . . Qnvnγ2(x, y, v) (2.2)

where Qi and vi are as above for all i ∈ [n], and γ2(x, y, v) is a Boolean combination

of formulas of the form

θ(f1(u1(x)), . . . , fr(ur(x)), y, v),

where θ(z1, . . . , zr, y, v) is an atomic L↾Σ-formula, and for all j ∈ [r], uj(x) is a tu-

ple of L↾Π-terms and fj is a function symbol in FΣ of the appropriate sort. Let

3Here an existential formula is one whose prenex normal form consists of a block of existential
quantifiers followed by a quantifier-free formula.
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f1(u1(x)), . . . , fm(um(x)) be a complete list of all the terms appearing in γ2 which are

of the form f(u(x)), where u(x) is a tuple of L↾Π-terms and f is a function symbol

in FΣ of the appropriate sort, and let γ3(z, y, v) be the formula obtained by replacing

each occurrence of the term fi(ui(x)) in γ2 by a new Σ-variable zi for all i ∈ [m]; then

γ3 is an L↾Σ-formula by construction, and (2.2) is equivalent modulo T to

∃z

(
γ(z, y) ∧∧

m∧∧
i=1

zi = fi(ui(x))

)
,

where γ(z, y) is defined as Q1v1 . . . Qnvnγ3(z, y, v). The moreover part in the statement

of the lemma is clear by construction.

Proposition 2.1.9. Suppose that Σ is closed. Suppose further that:

(i) every atomic L↾Π-formula ψ(x) is equivalent modulo T to an L -formula of the

form θ(f1(u1(x)), . . . , fr(ur(x))), where θ(z1, . . . , zr) is an atomic L↾Σ-formula,

and for all i ∈ [r], ui(x) is a tuple of L↾Π-terms and fi is a function symbol in

FΣ of the appropriate sort; and

(ii) for all m ∈ N, all tuples (f1, . . . , fm) of functions fi ∈ FΣ, and all tuples of

L↾Π-terms ui(x,w), the formula

∃w

[
m∧∧
i=1

zi = fi(ui(x,w))

]

is equivalent to a formula without Π-quantifiers, where zi are appropriate Σ-

variables.

Then T eliminates Π-quantifiers; equivalently (Lemma 2.1.7), T eliminates quantifiers

relative to Σ. Moreover, if each of the formulas in (ii) is equivalent to an existential

formula without Π-quantifiers, then every existential formula is equivalent modulo T

to an existential formula without Π-quantifiers.

Proof. By writing formulas in prenex normal form and inducting over Π-quantifiers,

it suffices in turn by Lemma 2.1.8 and item (i) to show that

∃w

[
∃z

(
γ(z, y) ∧∧

m∧∧
i=1

zi = fi(ui(x,w))

)]
, (2.3)
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is equivalent to a formula without Π-quantifiers, where γ, fi, and ui are as in the

formula (�) in Lemma 2.1.8. Since γ(z, y) is an L↾Σ-formula and w is a Π-variable,

(2.3) is equivalent to

∃z

[
γ(z, y) ∧∧ ∃w

(
m∧∧
i=1

zi = fi(ui(x,w))

)]
, (2.4)

and (2.4) is in turn equivalent to a formula without Π-quantifiers by item (ii), con-

cluding thus the proof. The moreover part in the statement of the lemma is clear by

construction.

2.1.2 Recursive model theory

This subsection deals with the effective content of model theory needed for the correct

formalization of the decidability statements that appear in the rest of the thesis, in

particular those in Section 3.5; standard references for recursive model theory (also

known as computable or constructive model theory) are [Mil99] and [Har98].

Albeit here it is assumed that the reader has a basic working knowledge of the

concept of a (partial) recursive function (see for example [Her69], [Rog67], [Man10,

Chapter V], [Mur99, Chapter 1]), the proofs which involve showing that a particular

function or set is recursive4 will always implicitly invoke the Church-Turing thesis

(cf. [Man10, Chapter V, Subsections 2.5 and 2.6]) as it is commonly done in much of

mathematical practice; that is, a function is recursive if and only if it can be computed

somehow.

Definition 2.1.10 (cf. 2.1.1 in [Mil99]). Let L be a one-sorted language. Write F for

the set of function symbols of L , R for the set of relation symbols of L , C for the set of

constant symbols of L , and S for the set of logical symbols of L . The language L is

recursive if there exists an injective function (called an effective/recursive presentation

of L )

⌈−⌉ : F ∪̇ R ∪̇ C ∪̇ S ↪−→ ω

such that

(i) if V := {xi | i < ω} ⊆ S is the set of variables of L , then ⌈xi⌉ = 2i ∈ ω;

4Recall that a set S ⊆ ωn is recursive if its characteristic function χS : ωn −→ ω is (total)
recursive.
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(ii) the sets ⌈F ⌉, ⌈R⌉, and ⌈C ⌉ are recursive; and

(iii) the functions ⌈F ⌉ −→ ω and ⌈R⌉ −→ ω sending ⌈F ⌉ to the arity of F ∈ F and

⌈R⌉ to the arity of R ∈ R (respectively) are partial recursive and have recursive

image.

Remark 2.1.11. Since every finite set is recursive, every finite one-sorted language is

recursive. However, not every countable one-sorted language is recursive. Indeed, let

S ⊆ ω be a non-recursive subset and consider the one-sorted language L consisting

only of a single n-ary function symbol for each n ∈ S; then L is not recursive, since

for any effective presentation ⌈−⌉ of L , the image of the arity map ⌈F ⌉ −→ ω is

exactly S, hence not recursive.

Remark 2.1.12. Let L be a one-sorted recursive language and C be a new countable set

of constant symbols; then the language L (C) obtained by enriching L with constant

symbols for each c ∈ C is also recursive. Indeed, let ⌈−⌉ be an effective presentation

of L , and define S ⊆ ω to be the image of ⌈−⌉, noting that S is recursive, and thus

so is ω \S. If ω \S is infinite, then one may extend the effective presentation of L to

an effective presentation of L (C) by choosing any bijection C −→ ω \ S. If ω \ S is

not infinite, then define ⌈−⌉′ := (2 ·)◦⌈−⌉ where 2 · : ω ↪−→ ω is the function n 7→ 2n;

then ⌈−⌉′ is an effective presentation of L whose recursive image in ω has infinite

complement, therefore one can extend ⌈−⌉′ to an effective presentation of L (C) as

above.

Unless stated otherwise, L denotes a recursive one-sorted language for

the remaining of this subsection.

Theorem 2.1.13. Let L -Trm and L -Fml be the sets of L -terms and L -formulas,

respectively. There exists an injective function (called a Gödel numbering/coding of

L )

⌜−⌝ : L -Trm ∪̇ L -Fml ↪−→ ω

such that ⌜L -Trm⌝ and ⌜L -Fml⌝ are recursive.

Proof. Folklore. The proof starts with an effective presentation of L and builds the

Gödel numbering of L by induction on the complexity of terms and formulas, see for

instance [Man10, Chapter VII, Section 4] or [EP84, Chapter 7, Section 38].
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Definition 2.1.10 and Theorem 2.1.13 are commonly referred to in the literature as

the arithmetization (or Gödelization) of syntax. The Gödel numbering of a recursive

language L depends on the effective presentation of L , but the choice of the effective

presentation of L is not relevant to the purpose of tackling decidability issues dealt

with in this thesis (see Remarks 2.1.16 and 2.1.18), therefore in what follows:

Unless stated otherwise, the symbol ⌜−⌝ stands for some fixed Gödel

numbering of L .

Using Theorem 2.1.13 one can also show that many other syntactic properties

and constructions of L -terms and L -formulas are recursive; for instance, if L -Sen

is the set of L -sentences, then ⌜L -Sen⌝ is recursive and the function ⌜L -Sen⌝ ×

⌜L -Sen⌝ −→ ⌜L -Sen⌝ given by (⌜φ⌝, ⌜ψ⌝) 7→ ⌜φ → ψ⌝ is partial recursive with

recursive image. Moreover, the Gödel numbering of L serves as a way of formalizing

the effectiveness of syntactic notions, in particular:

Definition 2.1.14. Let Φ,Ψ ⊆ L -Fml and suppose that ⌜Φ⌝, ⌜Ψ⌝ ⊆ ω are recursive.

Let T be an L -theory. Say that every formula in Φ is effectively equivalent to a

formula in Ψ modulo T if there exists a partial recursive function F : ⌜Φ⌝ −→ ⌜Ψ⌝

such that for every φ(x) ∈ Φ, the formula φ(x) is equivalent to ψ(x) modulo T , where

ψ(x) is the unique formula in Ψ such that ⌜ψ(x)⌝ = F (⌜φ(x)⌝).

For example, if Φ := L -Fml and Ψ is the set of quantifier-free formulas, then

Definition 2.1.14 says that T has effective quantifier elimination; note that there exist

theories in finite (hence recursive) languages with quantifier elimination but without

effective quantifier elimination, see [Pru01, Theorem 3].

Definition 2.1.15. A subset Σ ⊆ L -Fml is recursive if ⌜Σ⌝ is recursive. An L -

theory T is decidable if T is recursive.

Intuitively, an L -theory T is decidable if there exists an effective procedure which

determines whether φ ∈ T or not for every L -sentence φ. More precisely, Definition

2.1.15 states that an L -theory is decidable if there exists a recursive presentation ⌈−⌉

of L such that the image of T under the Gödel numbering of L corresponding to

⌈−⌉ is recursive. The next remark shows that for finite languages L , decidability of

an L -theory T is independent of the choice of a recursive presentation of L :
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Remark 2.1.16. Suppose that L is finite, and that ⌈−⌉1 and ⌈−⌉2 are two recursive

presentations of L yielding corresponding Gödel numberings ⌜−⌝1 and ⌜−⌝2 of L . If

T is an L -theory and ⌜T⌝1 is recursive, then ⌜T⌝2 is also recursive. Indeed, since L is

finite, it is clear that the images S1 and S2 of ⌈−⌉1 and ⌈−⌉2 are recursively isomorphic,

that is, that there exists a partial recursive bijection S1 −→ S2 with partial recursive

inverse. By the inductive construction of the Gödel numbering, this yields a recursive

isomorphism ⌜T⌝1 −→ ⌜T⌝2, from which the claim follows.

Definition 2.1.17. Let M be a countable L -structure (in particular L (M) is a

recursive language by Remark 2.1.12).

(i) M is recursive if Diagat(M ) is recursive, where

Diagat(M ) := {φ(a) ∈ L (M)-Sen | φ(x) is an L -literal, a ∈M |x|, and

M |= φ(a)}

is the atomic diagram of M (recall that an L -literal is an atomic L -formula or

the negation of an atomic L -formula).

(ii) M is decidable if Diagel(M ) is recursive, where

Diagel(M ) := {φ(a) ∈ L (M)-Sen | φ(x) is an L -formula, a ∈M |x|, and

M |= φ(a)}

is the elementary diagram of M . In other words, M is decidable if and only if

the L (M)-theory of (M ,M) is decidable.

Remark 2.1.18. Spelled out in full, Definition 2.1.17 (i) says that a L -structure M

is recursive (decidable) if there exists a Gödel numbering ⌜−⌝ of L (M) such that

⌜Diagat(M )⌝ (⌜Diagel(M )⌝) is recursive. In particular, if M is recursive (decidable)

and N is an L -structure L -isomorphic to M , then N is also recursive (decidable).

Remark 2.1.19. If M is recursive, then ⌜M⌝ is regarded in a canonical way as an

L -structure. The L -isomorphism M −→ ⌜M⌝ is known in the literature as a recur-

sive (or computable) presentation of M , see for example [KS99, Definition 2.1] and

[Mon21, Definition I.1]. In general, if M −→ ⌜M⌝′ is another recursive presentation of

M , then the L -structures ⌜M⌝ and ⌜M⌝′ may have different computability-theoretic
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properties; for instance, ⌜Diagel(M )⌝ may be recursive while ⌜Diagel(M )⌝′ is not, see

[KS99, Proposition 6.1] or [Mon21, Example I.1.2]. For the purposes of this thesis

these issues will not arise as it will suffice to show that a recursive presentation with

some property exists (cf. Remarks 2.1.16 and 2.1.18).

Remark 2.1.20. Let M be a countable L -structure.

(i) M is recursive if and only if, after identifying M with ⌜M⌝ ⊆ ω, the inter-

pretation of all function and relation symbols of L in ⌜M⌝ are (uniformly5)

recursive.

(ii) Since the set of L -literals is recursive, if M is decidable, then M is recursive;

similarly, if M is decidable, then the L -theory of M is also decidable. How-

ever, the converse of these two implications is not true in general: (ω,+, ·) is a

recursive structure which is not decidable, and the structure (R,+, ·,−, 0, 1) is

not recursive but it has a decidable theory.

(iii) Recursive and decidable structures in the sense of Definition 2.1.17 are also

known in the literature as constructive and strongly constructive structures (re-

spectively), see for example [EG98].

Example 2.1.21. Let L poring := {+,−, ·, 0, 1,≤} be the language of partially ordered

rings. A partially ordered ring A is recursive if it is a recursive L poring-structure; for

example, the totally ordered field Q is recursive. The Chapter 2 in Levin’s thesis

[Lev09] summarizes various constructions to obtain recursive totally ordered fields

from a given recursive totally ordered domain; the main such constructions are:

(i) If A is a recursive totally ordered domain, then its (totally ordered) quotient

field qf(A) is recursive; see [Lev09, Lemma 2.3.1].

(ii) If F is a recursive totally ordered field, then the polynomial ring F [t] totally

ordered by setting 0 < t < f for all f ∈ F>0 (that is, t is a positive infinitesimal

with respect to F ) is recursive; see [Lev09, Example 2.3.2].

(iii) (Madison’s theorem; [Mad70]) If F is a recursive totally ordered field, then its

real closure ρ(F ) is recursive.

5For the exact definition of uniform recursivity of the interpretations of all function and relation
symbols of a structure see [Ers+98, p. xv] or [Mon21, Definition 1.1]. Uniformity is only needed to
define recursiveness of an L -structure M whenever L is an infinite language.
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In particular, the real closed field Ralg of real algebraic numbers is recursive, and thus

so is ρ(qf(Ralg[t])) = ρ(Ralg(t)), where t is a positive infinitesimal with respect to Ralg.

Lemma 2.1.22. Let A be a recursive ring, that is, A is a ring and a recursive L ring-

structure, where L ring := {+,−, ·, 0, 1}. If I ⊆ A is a recursive ideal (that is, I is an

ideal of A and a recursive subset of A), then A/I is a recursive ring.

Proof. Folklore, see for instance [Rab60, pp. 350, 1.6] or [ST99, Lemma 2.3.11].

The next result gives sufficient conditions for a recursive structure to be decidable;

in particular, it follows by Proposition 2.1.23 that every recursive real closed field

is decidable (this also follows by quantifier elimination for the L poring-theory of real

closed fields).

Proposition 2.1.23. Let T be a decidable and model complete theory. If a model M

of T is recursive, then M is decidable.

Proof. Folklore; see [CMS21, Proposition 1] or [EG98, Proposition 1.5].

This section concludes with a discussion on the effective content of the material in

Subsection 2.1.1. Suppose that L is a multi-sorted language, and assume for simplicity

that L has finitely many sorts; this is only a mild assumption, since every multi-sorted

language considered in the remaining part of the thesis has finitely many sorts. Under

suitable modifications of Definition 2.1.10 it can also be defined what it means for the

multi-sorted language L to be recursive; namely, one replaces items (i) and (ii) in

Definition 2.1.10 by

(i)’ if VS ⊆ S is the set of S-sorted variables of L , then ⌈VS⌉ is recursive for every

sort S of L , and

(ii)’ the sets ⌈F ⌉, ⌈R⌉, and ⌈CS⌉ are recursive for every sort S of L , where ⌈CS⌉ is

the set of S-sorted constants.

Under this definition of recursiveness for the finitely-sorted language L , the same

proof of Theorem 2.1.13 can be adapted to prove that L also has a Gödel numbering,

hence the notion of a recursive set of L -sentences is well-defined. In particular, this

enables the definition of an effective version of Definition 2.1.1 (v):
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Definition 2.1.24. Let L be a finitely-sorted recursive language with a partition

of sorts Π ∪̇ Σ. An L -theory T has effective elimination of Π-quantifiers if every

L -formula is effectively equivalent modulo T to a formula without Π-quantifiers.

Remark 2.1.25. The proofs of Lemma 2.1.6, Lemma 2.1.8, and Proposition 2.1.9 also

show that the analogous effective versions of these statements also hold true whenever

the language under consideration is finitely sorted and recursive.

2.2 Spectral spaces

Spectral spaces are a particular class of topological spaces. As mentioned at the

beginning of this chapter, the relevance of these spaces in this thesis is that they

can be used as spaces on which both real closed rings and lattice-ordered abelian

groups admit functional representations, see Lemmas 2.3.3 and 2.4.7, respectively. An

important result in this area is that the homeomorphism type of a spectral space X

is completely determined by the isomorphism type of a bounded distributive lattice

which is functorially associated to X. This is the content of Stone duality for spectral

spaces, which is tangential to the use of spectral spaces which is made in Sections 2.3

and 2.4 below.

All the material present in this section can be found in the monograph [DST19].

Other references for the subject are [Joh82], as well as the more recent [GG24].

Definition 2.2.1. A topological space X is a spectral space if it satisfies the following

four conditions:

(i) X is quasi-compact6 and T0.

(ii) The set

◦
K(X) := {O ⊆ X | O is quasi-compact and open} ⊆ P(X)

is a basis of open sets ofX which is closed under finite intersections. In particular,
◦
K(X) is a bounded distributive lattice.

6Here a topological space is quasi-compact if every open cover has a finite subcover.
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(iii) X is sober, that is, for every non-empty closed and irreducible subset C of X

there is a point x ∈ X with C = clX({x}), where clX(Y ) is the closure of a set

Y ⊆ X in X.

Every Boolean space (also known as Stone space) is spectral. In fact:

Theorem 2.2.2. Let X be a topological space. The following are equivalent:

(i) X is a Boolean space.

(ii) X is a spectral space and
◦
K(X) is a Boolean algebra.

(iii) X is a spectral space and Hausdorff.

Proof. See [DST19, Theorem 1.3.4].

Every spectral space X has the bounded and distributive lattice
◦
K(X) as basis

of open sets. Moreover, to every spectral space one can associate two other spectral

topologies also having certain bounded and distributive lattices as basis of open sets:

Proposition 2.2.3. Let X be a spectral space.

(i) The set

K(X) := {X \ U | U ∈
◦
K(X)} ⊆ P(X)

is a basis of open sets of a spectral topology on X, called the inverse topology.

The set X equipped with the inverse topology is denoted by Xinv, and the elements

in K(X) are called closed constructible subsets of X; moreover,
◦
K(Xinv) = K(X)

and K(Xinv) =
◦
K(X).

(ii) The set

K(X) :=

{
n⋂
i=1

(Ui ∪ Vi) | n ∈ N, Ui ∈
◦
K(X) and Vi ∈ K(X) for all i ∈ [n]

}
is a basis of open sets of a spectral topology on X, called the constructible topol-

ogy. The set X equipped with the constructible topology is denoted by Xcon,

and the elements in K(X) are called constructible subsets of X; moreover,
◦
K(Xcon) = K(Xcon) = K(X) and Xcon is a Boolean space.

Proof. For item (i) see [DST19, Definition 1.4.1 and Theorem 1.4.3]. For item (ii) see

[DST19, Definition 1.3.1, Theorem 1.3.14, and Corollary 1.3.15].
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Definition 2.2.4. A function f : X −→ Y between spectral spaces is a spectral map

if f−1(U) ∈
◦
K(X) for every U ∈

◦
K(Y ). Spectral spaces together with spectral maps

form a category which is denoted by Spec.

Remark 2.2.5. If X is a spectral space, then
◦
K(X) and K(X) are bounded distributive

lattices, and K(X) is a Boolean algebra. In particular, let BDLat be the category of

bounded distributive lattices together with lattice homomorphisms which preserve the

top and bottom elements, and let BoolAlg be the (full) subcategory of BDLat whose

objects are Boolean algebras. Then (by taking preimages)
◦
K and K are contravariant

functors Spec −→ BDLat, and K is a contravariant functor Spec −→ BoolAlg.

Proposition 2.2.6. Let X be a spectral space and Y ⊆ X be any subset. The following

are equivalent:

(i) Y is a spectral subspace of X, that is, the inclusion map Y
⊆
↪−→ X is a spectral

map.

(ii) Y is proconstructible in X, that is, Y is closed in Xcon.

Proof. See [DST19, Theorem 2.1.3].

2.2.1 The prime spectrum and the real spectrum of a ring

It is well known that the set Spec(A) of prime ideals of a ring A can be topologized

with a spectral topology know as the Zariski (or hull-kernel) topology ; in fact, by

Hochster’s theorem every spectral space is homeomorphic to Spec(A) for some ring

A, see [Hoc69] or [DST19, Section 12.6]. The next statements summarize the main

properties of the Zariski spectrum of a ring which will be needed in Section 2.3:

Notation 2.2.7. Let A be a ring. Write Spec(A) for the prime (or Zariski) spectrum of

A, that is, the set of prime ideals of A. For each a ∈ A set also D(a) := {p ∈ Spec(A) |

a /∈ p}, V (a) := {p ∈ Spec(A) | a ∈ p}, and V (S) := {p ∈ Spec(A) | S ⊆ p}.

Proposition 2.2.8. Let A be a ring.

(i) The sets D(a) (a ∈ A) form a basis of open sets for a spectral topology on

Spec(A) called the Zariski topology; equipped with this topology,
◦
K(Spec(A)) :=

{
⋃n
i=1D(ai) | n ∈ N, a1, . . . , an ∈ A} and K(Spec(A)) := {V (S) | S ⊆ A finite}.
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(ii) If B is a ring and f : A −→ B is a ring homomorphism, then Spec(f) :

Spec(B) −→ Spec(A) defined by Spec(f)(p) := f−1(p) for p ∈ Spec(B) is a

spectral map; in particular, Spec(−) : CRing −→ Spec is a functor.

Proof. See [DST19, Section 2.5.A] and [DST19, Section 12.1].

Proposition 2.2.9. Let A be a ring. The map

K(Spec(A)) −→ Irad
fin (A)

V (F ) 7−→
√
(F )

is an anti-isomorphism7 of bounded and distributive lattices, where:

(i)
√

(F ) is the smallest radical ideal containing the ideal (F ) generated by F ; equiv-

alently, √
(F ) = {a ∈ A | ∃n ∈ N such that an ∈ (F )} =

⋂
p∈V (F )

p (∗)

(ii) (Irad
fin (A),⊆) is the lattice of finitely generated radical ideals with join and meet

of
√
(F1),

√
(F2) ∈ Irad

fin (A) given by
√

(F1) + (F2) and
√
(F1) ∩

√
(F2) (=√

(F1) · (F2)) (respectively), and top and bottom element given by
√
(1) and

√
(0)

(respectively).

Proof. See [DST19, Corollary 12.1.11]. The equalities in (∗) follow by basic commu-

tative algebra, as well the fact that if F1, F2 ⊆ A are finite, then the ideals (F1)+ (F2)

and (F1) · (F2) are finitely generated.

In [CR82] Coste and Roy introduce another spectral space functorially associated

to any ring A, namely the real spectrum Sper(A) of A, see Definition 2.2.10 (II) and

Proposition 2.2.13. The elements in Sper(A) are prime cones of A, which are certain

subsets of A that are in bijective correspondence with pairs (p,≤), where p ∈ Spec(A)

and ≤ is a total order on A/p turning it into a totally ordered domain, see Definition

2.2.10 (I) and Proposition 2.2.12. It is in this way that Sper(A) captures order-theoretic

information of A.

Definition 2.2.10. Let A be a ring.

7An anti-isomorphism of posets F : (P,≤P ) −→ (Q,≤Q) is a bijection F between posets (P,≤P )
and (Q,≤Q) such that f ≤P g if and only if F (f) ≥Q F (g) for all f, g ∈ P .
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(I) A prime cone of A is a subset α ⊆ A satisfying the following properties:

(i) If a, b ∈ α, then a+ b ∈ α and ab ∈ α.

(ii) If a ∈ A, then a2 ∈ α.

(iii) For all a ∈ A, either a ∈ α or −a ∈ α.

(iv) −1 /∈ α.

(v) The set supp(α) := α ∩ −α = {a ∈ A | a ∈ α and − a ∈ α}, called the

support of α, is a prime ideal of A.

(II) The set

Sper(A) := {α ⊆ A | α is a prime cone of A}

is the real spectrum of A.

Remark 2.2.11. Let A be a ring and α ∈ Sper(A). Then supp(α) is a real ideal of A,

that is, for all n ∈ N and all a1, . . . , an ∈ A,
∑n

i=1 a
2
i ∈ supp(α) implies ai ∈ supp(α)

for all i ∈ [n]. Indeed, pick i ∈ [n]. Since supp(α) is a prime ideal, it suffices to show

that a2i ∈ supp(α) = α ∩ −α, and since a2i ∈ α by Definition 2.2.10 (I) (ii), it suffices

to show in turn that a2i ∈ −α, that is, −a2i ∈ α. Since
∑n

i=1 a
2
i ∈ supp(α) ⊆ −α, one

has −a21 − . . .− a2n ∈ α, therefore

−a2i = −a21 − . . .− a2n +
∑

i∈[n]\{i}

a2i ∈ α

by items (II) (i) and (II) (iii) in Definition 2.2.10, as required.

Proposition 2.2.12. Let A be a ring.

(i) If p is a prime ideal and ≤ is a total order on A/p such that (A/p,≤) is a totally

ordered ring, then the set {a ∈ A | a/p ≥ 0/p} is a prime cone of A.

(ii) The set

{(p,≤) | p ∈ Spec(A) and (A/p,≤) is a totally ordered ring}

is in bijection with Sper(A): the bijection sends (p,≤) to {a ∈ A | a/p ≥ 0/p},

and its inverse sends α ∈ Sper(A) to (supp(α),≤α), where

a/supp(α) ≤α b/supp(α)
def⇐⇒ b− a ∈ α.
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Proof. See [DST19, Proposition 13.1.4].

Proposition 2.2.13. Let A be a ring.

(i) The sets

H>0(a1, . . . , an) := {α ∈ Sper(A) | −ai /∈ α for all i ∈ [n]}

for all finite sequences a1, . . . , an ∈ A (n ∈ N) form a basis of open sets for

a spectral topology on Sper(A) called the Harrison topology; equipped with this

topology, the quasi-compact open subsets of Sper(A) are exactly the finite unions

of sets of the form above.

(ii) If B is a ring and f : A −→ B is a ring homomorphism, then Sper(f) :

Sper(B) −→ Sper(A) defined by Sper(f)(α) := f−1(α) for α ∈ Sper(B) is a

spectral map; in particular, Sper(−) : CRing −→ Spec is a functor.

Proof. See [DST19, Theorem 2.5.8].

The connection between the Zariski and the real spectrum of a ring is captured in

the following:

Proposition 2.2.14. Let A be a ring. The map supp(−) : Sper(A) −→ Spec(A) given

by α 7→ supp(α) is spectral; moreover, supp is a natural transformation of functors

Sper −→ Spec.

Proof. See [DST19, Theorem 2.5.12. (ii)].

2.3 Real closed rings

The original construction of real closed rings given by Schwartz in [Sch89] assigns a ring

ρ(A,X) to every ring A and to every proconstructible subset X of the real spectrum

Sper(A) of A. The ring ρ(A,X) is the real closure of A on X, and it is a particular

subring of the product of real closed fields
∏

α∈X qf(A/supp(α)), namely, ρ(A,X) is

the ring of compatible and constructible sections on X, see [Sch89, Definition I.2.8].

An arbitrary ring A is then defined to be real closed if the canonical map a 7→

(a/supp(α))α∈Sper(A) yields a ring isomorphism A −→ ρ(A, Sper(A)) (see [Sch89, Defi-

nition I.4.1.]), therefore a ring is defined to be real closed if and only if it is canonically
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isomorphic to the ring of constructible and compatible sections on its real spectrum.

The following is an equivalent definition of real closed rings which can be found in

[Sch86] and [PS].

Definition 2.3.1. A ring A is a real closed ring if it satisfies the following conditions:

(i) A is reduced, that is, if a2 = 0 implies a = 0 for all a ∈ A (equivalently, the

intersection of all prime ideals is the zero ideal);

(ii) the set of squares of A is the set of non-negative elements of a partial order ≤

on A and (A,≤) is an f -ring, i.e., (A,≤) is a partially ordered ring such that

for every a, b ∈ A the supremum a ∨ b and the infimum a ∧ b exist in A, and

a ∧ b = 0 and c ≥ 0 imply (ca) ∧ b = 0 for all a, b, c ∈ A;

(iii) for all a, b ∈ A, if 0 ≤ a ≤ b, then there exists c ∈ A such that bc = a2; and

(iv) qf(A/p) is a real closed field and A/p is integrally closed for all p ∈ Spec(A).

It is clear from Definition 2.3.1 that a field is a real closed ring if and only if it is

a real closed field. Arbitrary convex subrings of real closed fields are also real closed

rings: these are precisely those real closed rings which are valuation rings (see Theorem

2.3.6), and their main algebraic and model-theoretic properties are summarized in

Subsection 2.3.1. Other examples of real closed rings include:

• For every ring A and every X ⊆ Sper(A), the real closure ρ(A,X) of A on X,

see [Sch89, Theorem I.3.25].

• Rings C(X) of continuous real-valued functions on a topological space X, see

[Sch97, Theorem 1.2].

• Rings Cs.a.(X) of continuous semi-algebraic functions X −→ R on a semi-

algebraic subset X ⊆ Rm over a real closed field R, see [Sch89, Section III.1].

• Semi-algebraic function rings in the sense of Madden and Schwartz, see [SM99,

Section 7 and Example 12.15].

Many of the examples of real closed rings given above are rings of functions. Lemma

2.3.3 below shows how to regard every real closed ring as an actual ring of functions
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on its Zariski spectrum. Before proving that, the main properties of real closed rings

that will be made use of in the rest of this document are summarized in the following

theorem:

Theorem 2.3.2. (I) The category of real closed rings together with ring homomor-

phisms is complete and cocomplete; in particular, direct and fibre products of real

closed rings are real closed.

(II) Let A be a real closed ring.

(i) If I ⊆ A is an ideal, then A/I is real closed if and only if I is radical.

(ii) If S ⊆ A is a multiplicative subset, then the localization S−1A is real closed.

(iii) The poset (Spec(A),⊆) is a root system, i.e., for all p ∈ Spec(A), the

principal up-set p↑ := {q ∈ Spec(A) | p ⊆ q} is a chain.

(iv) If I, J ⊆ A are radical ideals, then I + J is a radical ideal. In particular:

(a) If p, q ∈ Spec(A) and 1 /∈ p+ q, then p+ q ∈ Spec(A).

(b) The poset (Irad(A),⊆) of radical ideals of A is a distributive lattice

with join and meet operations given by sum and intersection of ideals,

respectively.

(III) If A and B are real closed rings, then any ring homomorphism f : A −→ B

preserves the order and the lattice operations ∨ and ∧ (see Definition 2.3.1 (ii)).

Proof. (I). By [SM99, Section 12], the category of real closed rings is a monoreflective

subcategory of the category of reduced partially ordered rings; since the latter category

is complete and cocomplete by [SM99, Theorem 1.7], so is the category of real closed

rings by [SM99, Proposition 2.3] and [SM99, Proposition 2.7].

(II). Item (i) is [Sch89, Chapter I, Theorem 4.5] and item (ii) is [SM99, Proposition

12.6]. Item (iii) follows from [DST19, Theorem 13.1.9 (iii)] together with the fact that

the support map Sper(A) −→ Spec(A) is a homeomorphism (see [Sch89, Chapter I,

Theorem 3.10] or [SM99, Proposition 12.4. (d)]), and (iv) is [Sch86, Corollary 15].

For (iv) (a), pick p, q ∈ Spec(A) such that 1 /∈ p + q. Since p + q is a radical ideal,

p + q =
⋂
{r ∈ Spec(A) | p + q ⊆ r}, and since 1 /∈ p + q, S := {r ∈ Spec(A) |

p+ q ⊆ r} ≠ ∅. If r1, r2 ∈ S, then p ⊆ r1, r2, therefore r1 and r2 are comparable under
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subset inclusion by (iii); it follows that S is a chain in (Spec(A),⊆), therefore p+ q =⋂
r∈S r ∈ Spec(A). For (iv) (b) it remains to show that the lattice (Irad(A),+,∩) is

distributive, so pick I, J,K ∈ Irad(A); the inclusion (I ∩ J) + (I ∩K) ⊆ I ∩ (J +K)

is clear, and if a ∈ I ∩ (J +K), then a = j + k for some j ∈ J and k ∈ K, therefore

a2 = aj + ak ∈ IJ + IK ⊆ (I ∩ J) + (I ∩K), and since (I ∩ J) + (I ∩K) ∈ Irad(A),

a ∈ (I ∩ J) + (I ∩K) follows, as required.

(III). That f preserves the order is clear by Definition 2.3.1 (ii), and that f preserves

the lattice operations follows from [DM95, Lemma 2.2].

Lemma 2.3.3. Let A be a real closed ring. Then A is isomorphic (as a ring and as

a lattice) to an f -ring of functions Spec(A) −→ R for some real closed field R.

Proof. Since A is reduced,
⋂

p∈Spec(A) p = (0), therefore the canonical map A −→∏
p∈Spec(A)A/p given by a 7→ (a/p)p∈Spec(A) is injective. The canonical map A −→∏
p∈Spec(A)A/p is a ring homomorphism, and it preserves the lattice operations by

Theorem 2.3.2 (III) since
∏

p∈Spec(A)A/p is real closed by items (II) (i) and (I) in

Theorem 2.3.2. Since the L poring-theory of real closed fields is complete and has

quantifier elimination, this theory has the joint embedding property by [CK90, Propo-

sition 3.5.11], therefore8 there exists a real closed field R such that qf(A/p) ⊆ R for

all p ∈ Spec(A), and thus the composite map

A −→
∏

p∈Spec(A)

A/p
⊆−→

∏
p∈Spec(A)

qf(A/p)
⊆−→

∏
p∈Spec(A)

R = RSpec(A)

is a ring and a lattice isomorphism onto its image, as required.

The next proposition can be seen as a special case of [DM95, Section 4]; there it

is shown that the lattice of quasi-compact open sets of the Brumfield spectrum of an

f -ring A is isomorphic to the lattice of principal radical ℓ-ideals of A.

Proposition 2.3.4. Let A be a real closed ring. Then K(Spec(A)) = {V (a) | a ∈ A}

and the map

K(Spec(A)) −→ Irad
prin(A)

V (a) 7−→
√

(a)

8If a model complete theory T has the joint embedding property (such as the theory of real closed
fields), then an arbitrary collection of models {Mi}i∈I of T can be jointly embedded into a model
M of T : M is constructed by transfinite recursion, and it is a model of T by the Elementary Chain
Theorem ([CK90, Theorem 3.1.9]).
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is an anti-isomorphism of bounded distributive lattices, where (Irad
prin(A),⊆) is the lattice

of principal radical ideals with join and meet of
√

(a1),
√

(a2) ∈ Irad
prin(A) given by√

(a1) +
√

(a2) (=
√

(a21 + a22)) and
√
(a1)∩

√
(a2) (=

√
(a1 · a2)) (respectively), and

top and bottom element given by
√

(1) and
√

(0) (respectively).

Proof. Elements in K(Spec(A)) are of the form V (F ) (see Notation 2.2.7), where

F ⊆ A is finite, say F := {a1, . . . , an}. Since A is real closed, it support map

Sper(A) −→ Spec(A) is a homeomorphism (see [Sch89, Chapter I, Theorem 3.10]

or [SM99, Proposition 12.4. (d)]), therefore every p ∈ Spec(A) is supp(α) for a unique

α ∈ Sper(A). In particular, every p ∈ Spec(A) is a real ideal by Remark 2.2.11,

therefore (cf. [PS, p. 13])

V (F ) = V ({a1, . . . , an}) = {p | a1, . . . , an ∈ p}

= {p | a21, . . . , a2n ∈ p}

= {p | a21 + · · ·+ a2n ∈ p}

= V (a21 + · · ·+ a2n), (∗)

from which K(Spec(A)) = {V (a) | a ∈ A} follows. Note that (∗) also implies that

V (a) ∩ V (b) = V ({a, b}) = V (a2 + b2) and that if F = {a1, . . . , an}, then
√

(F ) =√
(a21 + · · ·+ a2n) ∈ Irad

prin(A) by Proposition 2.2.9 (i), therefore by Proposition 2.2.9 it

suffices to show that the join operation on Irad
fin (A) defined in Proposition 2.2.9 (ii) and

the join operation on Irad
prin(A) defined in the statement of this lemma coincide, that is,

that √
(a1) + (a2)

(1)
=
√

(a21 + a22)
(2)
=
√

(a1) +
√

(a2)

for all a1, a2 ∈ A. The equality (1) follows from V (a1)∩ V (a2) = V (a21 + a22) and from

the fact that the map in Proposition 2.2.9 is an anti-isomorphism. Since (a1), (a2) ⊆

(a1) + (a2), it follows that
√

(a1),
√

(a2) ⊆
√

(a1) + (a2), therefore
√
(a1) +

√
(a2) ⊆√

(a1) + (a2), but
√

(a1) +
√

(a2) is a radical ideal by Theorem 2.3.2 (II) (iv) and

it contains (a1) + (a2), therefore
√

(a1) +
√
(a2) =

√
(a1) + (a2) by minimality of√

(a1) + (a2). This concludes the proof.
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2.3.1 Real closed valuation rings

Recall that a ring A is a valuation ring if A is a domain, and for all non-zero a, b ∈

qf(A), either a/b ∈ A or b/a ∈ A; a valuation ring A is non-trivial if A ̸= qf(A).

Valuation rings are in particular local rings whose unique maximal ideal consists of

those elements which are not multiplicative units of the ring; all of this is contained

in [EP05].

Definition 2.3.5. A ring A is a real closed valuation ring if A is a real closed ring

and a valuation ring.

Theorem 2.3.6. Let A be a ring. The following are equivalent:

(I) A is a real closed valuation ring.

(II) qf(A) is a real closed field and A is convex in qf(A).

(III) qf(A) is a real closed field and A = {a ∈ qf(A) | v(a) ≥ 0}, where v : qf(A) −↠

Γ ∪ {∞} is an order-compatible valuation on qf(A), that is, v is a valuation on

qf(A) (see [EP05]) such that for all a, b ∈ A, 0 ≤ a ≤ b implies v(b) ≤ v(a) .

(IV) A is a valuation ring, and both qf(A) and A/mA is are real closed fields.

(V) A is a totally ordered domain which satisfies the intermediate value property for

polynomials in one variable.

(VI) A is a totally ordered domain which satisfies the following conditions:

(i) For all a, b ∈ A, if 0 < a < b, then there exists c ∈ A such that bc = a.

(ii) Every positive element has a square root.

(iii) Every monic polynomial of odd degree has a root.

Proof. (I) ⇒ (II). It suffices to show that A is convex in qf(A), so pick a ∈ A and

b ∈ qf(A) such that 0 < b < a and assume for contradiction that b /∈ A; then b−1 ∈ A,

therefore 0 < 1 < ab−1 in A implies that there exists c ∈ A such that ab−1c = 12 = 1

(Definition 2.3.1 (iii)), hence b = ac ∈ A, a contradiction.

(II) ⇔ (IV). By [KS22, Proposition 2.2.4] and [KS22, Theorem 2.5.1 (b)].
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(IV) ⇒ (I). Pick p ∈ Spec(A). A is convex in qf(A) by the implication (IV) ⇒ (II),

therefore Ap is also convex in qf(A); in particular, Ap/pAp is a real closed field by the

implication (II) ⇒ (IV), therefore A/p is a valuation ring (hence integrally closed) of

the real closed field qf(A/p) = Ap/pAp, and thus it remains to show that the condition

in item (iii) of Definition 2.3.1 is satisfied. Pick a, b ∈ A such that 0 ≤ a ≤ b; then

0 ≤ a2/b ≤ b2/b = b ∈ A, and since A is convex in qf(A), it follows that c := a2/b ∈ A

is such that bc = a2, as required.

(II) ⇔ (III) ⇔ (V) ⇔ (VI) See [CD83, Theorem 1 and Lemma 4].

A particular class of real closed valuation rings are those valuation rings corre-

sponding to the canonical valuation of real closed Hahn series fields:

Definition 2.3.7. Let k be a field and Γ be a totally ordered abelian group. Define

k((Γ)) := k((xΓ)) to be the set of formal series a =
∑
aγx

γ :=
∑

γ∈Γ aγx
γ where

supp(a) := {γ ∈ Γ | aγ ̸= 0} is a well-ordered subset of Γ.

Theorem 2.3.8. Let k be a field and Γ be a totally ordered abelian group.

(i) The set k((Γ)) endowed with the operations of pointwise addition and Cauchy

product of formal series∑
aγx

γ +
∑

bγx
γ :=

∑
(aγ + bγ)x

γ

and (∑
aγx

γ
)(∑

bγx
γ
)
:=
∑
γ∈Γ

∑
δ+ε=γ

(aδbε)x
γ,

respectively, is a field called Hahn series field.

(ii) The map ν : k((Γ)) −↠ Γ ∪ {∞} given by ν(a) := min(supp(a)) if a ̸= 0 and

ν(0) = ∞ is a valuation with residue field k; write k[[Γ]] := k((Γ≥0)) for its

corresponding valuation ring.

(iii) If k is a totally ordered field, then k((Γ)) has the structure of a totally ordered

field by setting a > 0 if and only if aν(a) > 0 for all a ∈ k((Γ)); under this total

order, ν is an order-compatible valuation on k((Γ)).

(iv) k((Γ)) is a real closed field if and only if k is real closed and Γ is divisible; in

particular, k[[Γ]] is a real closed valuation ring if and only if k is real closed and

Γ is divisible.



CHAPTER 2. PRELIMINARIES 39

Proof. Folklore, see for instance [EP05, Exercise 3.5.6], [ADH17, Section 3.5], or

[DW96, Section 2]; the last statement in (iv) follows from the equivalence (I) ⇔ (III)

in Theorem 2.3.6.

It is well known that if V is a non-trivial real closed valuation ring, then there exists

a local embedding9 V ↪−→ k [[Γ]], where k := V/mV and Γ := qf(V )×/V × ([Pri83, 62,

Satz 21] and Theorem A.4), and k [[Γ]] is a real closed valuation ring by the implication

(I) ⇒ (IV) in Theorem 2.3.6; in fact, one can do slightly better:

Proposition 2.3.9. Let V ⊆ W be a local embedding of non-trivial real closed valua-

tion rings, and set k := V/mV , l := W/mW , Γ := qf(V )×/V ×, and ∆ := qf(W )×/W×,

noting that V ⊆ W induces a canonical embedding k[[Γ]] ⊆ l[[∆]]. There exist

local embeddings of non-trivial real closed valuation rings εV : V ↪−→ k[[Γ]] and

εW : W ↪−→ l[[∆]] such that εW ↾V = εV .

Proof. Immediate from Theorem A.5, since V ⊆ W being a local embedding implies

that (qf(V ), V ) ⊆ (qf(W ),W ) is an embedding of real closed valued fields.

Lemma 2.3.10. Let V be a non-trivial real closed valuation ring, λ : V −↠ V/mV =:

k be the residue map, B ⊆ k be a subring. The ring A := λ−1(B) ⊆ V is a real closed

valuation ring if and only of B is a real closed valuation ring.

Proof. Straightforward from Theorem 2.3.2 (I) and the equivalence (I) ⇔ (II) in The-

orem 2.3.6, using also the fact that λ is an order-preserving map and that λ−1(B) ∼=

V ×k B.

This subsection concludes with some model-theoretic facts about real closed valu-

ation rings which will be needed for Chapters 3 and 4. For what follows, recall that

L ring := {+,−, ·, 0, 1} is the language of rings.

Lemma 2.3.11. If V and W are valuation rings such that V ⊆ W , then V ⊆ W as

L ring(m)-structures if and only if V ⊆ W as L ring(div)-structures, where m is a unary

predicate interpreted as the maximal ideal and div is a binary predicate interpreted as

the divisibility relation.

9Recall that an embedding f : A ↪−→ B of local rings is said to be local if f−1(mB) = mA, where
mA and mB are the unique maximal ideals of A and B, respectively.
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Proof. If V ⊆ W as L ring(div)-structures and a ∈ mV , then V |= ¬div(a, 1), hence

W |= ¬div(a, 1) and thus V ∩ mW = mV . Suppose now that V ⊆ W as L ring(m)-

structures and let a, b ∈ V be such that W |= div(a, b), so that there exists c ∈ W

such that ac = b, and assume for contradiction that V |= ¬div(a, b); in particular, b ̸= 0

and c /∈ V . Since V is a valuation ring, V |= div(b, a), therefore there exists d ∈ V

such that bd = a; in particular, ac = bdc = b, hence b(1 − dc) = 0, therefore 1 = dc

and thus c−1 = d ∈ V , so c−1 ∈ mV = mW ∩ V , a contradiction to c, c−1 ∈ W .

Remark 2.3.12. The proof of Lemma 2.3.11 also shows that if A and B are local rings

such that A ⊆ B as L ring(div)-structures, then A ⊆ B as L ring(m)-structures, i.e.,

A ⊆ B is a local embedding.

In [CD83] the model theory of non-trivial real closed rings is studied in the lan-

guages L ring(≤) and L ring(≤, div); in particular, since the class of non-trivial real

closed valuation rings is elementary in the language L ring(≤) and the total order

x ≤ y in structures of this class is defined by the existential formula ∃z[z = (y − x)2]

(Theorem 2.3.6), the class of non-trivial real closed valuation rings is also elementary

in the language of rings.

Proposition 2.3.13. Let RCVR be the L ring-theory of non-trivial real closed valuation

rings, and p and m be unary predicate symbols.

(i) Define RCVR(m) to be the L ring(m)-theory RCVR together with the sentence ex-

pressing that m is the set of non-units. Then RCVR(m) is complete, model com-

plete and decidable.

(ii) Define RCVR(b, m) to be the L ring(b, m)-theory RCVR(m) together with the sen-

tence expressing that b is a non-zero prime ideal properly contained in m. Then

RCVR(b, m) is complete and model complete.

Proof. (i) follows from [CD83, Theorems 4A and 4B] together with Lemma 2.3.11;

(ii) follows from [Tre09, Corollary 6.3], since every model (V, b,mV ) |= RCVR(b, m) is

definable in (qf(V ), V, Vb) |= RCFconvex,2.

Lemma 2.3.14. Let V1 and V2 be non-trivial real closed valuation rings regarded as

L ring(≤, m)-structures, where ≤ is a binary predicate interpreted as the total order

relation and m is a unary predicate interpreted as the maximal ideal. If A is a totally
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ordered valuation ring such that A ⊆ V1, V2 as L ring(≤, m)-structures, then there exists

a non-trivial real closed valuation ring W which amalgamates V1 and V2 over A as

L ring(≤, m)-structures.

Proof. By Lemma 2.3.11, A ⊆ V1, V2 as L ring(≤, div)-structures, therefore by the

Cherlin-Dickmann theorem [CD83, Section 2] and [CK90, Proposition 3.5.19] there

exists a non-trivial real closed valuation ring W amalgamating V1 and V2 over A as

L ring(≤, div)-structures; conclude by appealing to Lemma 2.3.11 again.

2.3.2 The ring of germs at a half-branch of a curve

This subsection gives a detailed description of a particular real closed valuation ring

OR which arises naturally in semi-algebraic geometry as the ring of germs of continuous

semi-algebraic functions X −→ R at a half-branch β of a semi-algebraic curve X over

a real closed field R.

Definition 2.3.15 gives an alternate description of the ring OR, and this is followed

by the identification ofOR with the ring of germs of continuous semi-algebraic functions

[0, 1] −→ R at 0+, see Lemma 2.3.18. The subsection then continues with an analysis

of half-branches of semi-algebraic curves over real closed fields (Definition 2.3.19 -

Lemma 2.3.31), and it concludes showing in Proposition 2.3.35 that the definition of

the ring OR given in Definition 2.3.15 coincides with that in title of this subsection.

Throughout this subsection, R is a real closed field.

Any topological notions about a subset X ⊆ Rm are always taken to be phrased

with respect to the topology on X induced by the Euclidean topology on Rm ([BCR98,

Definition 2.1.9]).

Definition 2.3.15. Let R⟨t⟩ be the real closure of the function field R(t) totally

ordered by setting t to be a positive infinitesimal with respect to R. Define OR to be

the convex hull of R in R⟨t⟩, that is

OR := {s ∈ R⟨t⟩ | ∃r ∈ R such that 0 ≤ s ≤ r}.

OR is a non-trivial real closed valuation ring by the implication (II) ⇒ (I) in

Theorem 2.3.6. Its maximal ideal m := mOR
consists of those elements of R⟨t⟩ which
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are infinitesimal with respect to R and OR = R ⊕m as abelian groups; in particular,

the map R −→ OR/m given by r 7→ r/m is an isomorphism of real closed fields, see

[DL95, Remark 2.11]

Before identifying OR with the ring of germs of continuous semi-algebraic functions

[0, 1] −→ R at 0+ in Lemma 2.3.18, a model theoretic fact (Lemma 2.3.16) and a semi-

algebraic result (Theorem 2.3.17) are needed.

Lemma 2.3.16. Let R⟨t⟩ be as in Definition 2.3.15, and let φ(x) be any L poring(R)-

formula. The following are equivalent:

(i) There exists ε ∈ R with ε > 0 such that [0, ε]R ⊆ φ(R) := {r ∈ R | R |= φ(r)}.

(ii) R⟨t⟩ |= φ(t), that is, φ(x) ∈ tp(t/R).

Proof. (i) ⇒ (ii). Item (i) is equivalent to the statement that R |= ∀x(0 ≤ x ≤ ε →

φ(x)), from which (ii) follows.

(ii) ⇒ (i). It suffices to show that

R |= ∃y∀x[(y > 0 ∧∧ 0 ≤ x ≤ y) → φ(x)]. (∗)

Assume for contradiction that (∗) does not hold. Then the set of L poring(R)-formulas

Σ(x) := {(r > 0 ∧∧ 0 ≤ x ≤ r) ∧∧ ¬φ(x) | r ∈ R}

is finitely consistent, therefore by (model-theoretic) compactness Σ(x) has a realization

s in an elementary extension S ⪰ R. In particular, s and t determine the same cut in

R, therefore tp(t/R) = tp(s/R) by o-minimality (see [PS86, Theorem 3.3]), and thus

S |= φ(s) by (ii), yielding the required contradiction.

Theorem 2.3.17 (Semi-algebraic Tietze extension theorem). Let R be a real closed

field. Let D be a locally closed10 semi-algebraic set in Rm and C ⊆ D be semi-algebraic

and closed in D. If f : C −→ R is a continuous semi-algebraic function, then there

exists a continuous semi-algebraic function f̂ : D −→ R such that f̂↾C = f .

Proof. See [BCR98, Proposition 2.6.9] or [Dri98, Chapter 8, Corollary 3.10].

10A semi-algebraic set is locally closed if it is the intersection of a closed semi-algebraic set and an
open semi-algebraic set.
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Lemma 2.3.18. Let R be a real closed field. Consider the composite R-algebra homo-

morphism

Φ : Cs.a.([0, 1]R) ↪−→ Cs.a.([0, 1]R⟨t⟩) −↠ R⟨t⟩

f 7−→ fR⟨t⟩ 7−→ fR⟨t⟩(t),

where:

(i) [0, 1]R is the unit interval in R, and similarly for [0, 1]R⟨t⟩,

(ii) Cs.a.([0, 1]R) is the ring of continuous semi-algebraic functions [0, 1]R −→ R, and

similarly for Cs.a.([0, 1]R⟨t⟩).

(iii) fR⟨t⟩ is the function [0, 1]R⟨t⟩ −→ R⟨t⟩ defined by the same L poring(R)-formula

which defines f ∈ Cs.a.([0, 1]R).

Then im(Φ) = OR, ker(Φ) = {f ∈ Cs.a.([0, 1]R) | ∃ε > 0 such that f↾[0,ε] = 0}, and

Φ(f)/m = f(0)/m for all f ∈ Cs.a.([0, 1]R).

Proof. Pick f ∈ Cs.a.([0, 1]R) such that Φ(f) ≥ 0. By [BCR98, Proposition 2.6.2] there

exists a polynomial p(x) ∈ R[x] such that |f(x)| ≤ p(x) for all x ∈ [0, 1]R, therefore

also |fR⟨t⟩(x)| ≤ p(x) for all x ∈ [0, 1]R⟨t⟩. Since p(t) ∈ OR, it follows from convexity

of OR in R⟨t⟩ that fR⟨t⟩(t) = Φ(f) ∈ OR, therefore im(Φ) ⊆ OR.

To show that OR ⊆ im(Φ), pick s ∈ OR and assume without loss of generality

that s ≥ 0. By standard arguments, the real closed field R⟨t⟩ is exactly the definable

closure of R∪{t} in R⟨t⟩, therefore there exists a semi-algebraic function g : R −→ R

such that gR⟨t⟩(t) = s, see for example [DL95, Sections 2 and 3] and the references

therein. By the Monotonicity theorem (see [Dri98, Chapter 3, Section 1]), there ex-

ist a1, . . . , am ∈ R such that a1 < · · · < am and g is continuous on each interval

(−∞, a1), . . . , (ai, ai+1), . . . , (am,∞). There are two possible cases:

Case 1: 0 ̸= ai for all i ∈ [m]. Then 0 belongs to an open interval on which g is

continuous, from which it follows that there exists ε > 0 such that g is continuous on

[0, ε]. By Theorem 2.3.17 there exists f ∈ Cs.a.([0, 1]R) such that f↾[0,ε] = g↾[0,ε], and

Φ(f) = fR⟨t⟩(t) = gR⟨t⟩(t) = s for such f .

Case 2: There exists i ∈ [m] such that 0 = ai. By choice of s, there exists r ∈ R

such that g(t) = s ≤ r, therefore by Lemma 2.3.16 there exists ε > 0 such that g is
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R-bounded on [0, ε] = [ai, ε]. In particular, limx→0+ g(x) exists in R, and assuming

without loss of generality that ε ∈ (ai, ai+1), it follows that g is continuous on [0, ε].

As in Case 1, any f ∈ Cs.a.([0, 1]R) extending g↾[0,ε] satisfies Φ(f) = s.

The fact that ker(Φ) = {f ∈ Cs.a.([0, 1]R) | ∃ε > 0 such that f↾[0,ε] = 0} follows

easily from Lemma 2.3.16. Finally, pick f ∈ Cs.a.([0, 1]R). By choice of t, the extension

of real closed fields R ⊆ R⟨t⟩ is tame in the sense of [DL95], therefore every s ∈ OR

has a standard part, that is, a unique element st(s) ∈ R such that |s − st(s)| < ε

for all ε ∈ R with ε > 0. In fact, st(s) ∈ R is the unique element in R such that

st(s)/m = s/m (see [DL95, Remark 2.11]), therefore since Φ(f) ∈ OR it follows that

Φ(f)/m = fR⟨t⟩(t)/m = st(fR⟨t⟩(t))/m
(∗)
= f(st(t))/m = f(0)/m

where (∗) is by the non-standard characterization of continuity, see for instance [DL95,

Lemma 1.13].

Definition 2.3.19. A (semi-algebraic) curve is a 1-dimensional semi-algebraic subset

X ⊆ Rm without isolated points.

Example 2.3.20. (i) Every (affine) real algebraic curve (that is, a 1-dimensional

algebraic subset of Rm for some m ∈ N) without isolated points11 is a semi-

algebraic curve, for instance, the set of solutions in R2 of the equation

x2 + x3 − y2 = 0

is a real algebraic curve:

x

y

11In general, real algebraic curves can have isolated points: for example, the set of solutions in R2

of the equation x2 + y2 − x3 = 0 is a real algebraic curve having (0, 0) as unique isolated point.
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(ii) Not every semi-algebraic curve is a real algebraic curve. For example, let f :

R −→ R be the function given by f(x) := −x and let Γ(f) ⊆ R2 be its graph;

the set X := Γ(f) ∪ {(x, y) ∈ R2 | x ≥ 0 and x = y} a semi-algebraic curve:

x

y

ThenX is not a real algebraic curve since the number of half-branches (Definition

2.3.26) of a real algebraic curve at a point is always even ([BCR98, Theorem

9.5.7]) and X has exactly three half-branches at (0, 0) ∈ X.

Intuitively, a half-branch of a semi-algebraic curve X at a point a ∈ X captures

a direction from which one can get arbitrarily close to a within X; for instance, the

real algebraic curve in Example 2.3.20 (i) has exactly four half-branches at (0, 0), and

every point in X := R has exactly two half-branches. Half-branches are formally

defined as being a particular kind of germs of semi-algebraic sets (Definition 2.3.21),

see Definition 2.3.26 as well as Lemma 2.3.28.

Throughout the rest of this subsection, X ⊆ Rm is a semi-algebraic curve.

Definition 2.3.21. Let Y1, Y2 ⊆ X be semi-algebraic and let a ∈ X. Say that Y1

and Y2 have the same germ at a if there exists a semi-algebraic neighbourhood U of

a such that Y1 ∩ U = Y2 ∩ U . This defines an equivalence relation on the set of semi-

algebraic subsets of X. A germ (of semi-algebraic subsets) γ of X (centred) at a is an

equivalence class of semi-algebraic subsets Y ⊆ X which have the same germ at a.

Example 2.3.22. Let a ∈ X.

(i) The set of all Y ⊆ X semi-algebraic such that a is isolated in Y is a germ of X

at a.
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(ii) The set of all Y ⊆ X semi-algebraic such that a /∈ clX(Y ) is a germ of X at a,

where clX(Y ) is the closure of Y in X.

(iii) If γ is a germ of X at a, then either a ∈ Y for all Y ∈ γ or a /∈ Y for all

Y ∈ γ. In particular, if γ satisfies the property that a /∈ Y for all Y ∈ γ, then

γ′ := {Y ∪ {a} | Y ∈ γ} is a germ of X at a distinct from γ. For instance, if

X := R and a := 0, then the intervals (0, 1), [0, 1) ⊆ X are representatives of

two distinct germs of X at a.

Definition 2.3.23. A germ of X at a is non-degenerate if it is neither of the germs

described in items (i) and (ii) in Example 2.3.22.

Lemma 2.3.24. A germ γ of X at a is non-degenerate if and only if for all Y ∈ γ

and all semi-algebraic neighbourhoods U of a, intX(Y ∩ U) ̸= ∅, where int(Y ∩ U) is

the interior of Y ∩ U in X.

Proof. Suppose first that γ is non-degenerate. Let Y ∈ γ and let U be a semi-algebraic

neighbourhood of a; then exactly one of the following cases holds:

(i) a ∈ Y . In this case intX(Y ∩U ′) ̸= ∅ for any open semi-algebraic neighbourhood

U ′ ⊆ X of a; otherwise, by o-minimality, intX(Y ∩ U ′) = ∅ implies that Y ∩ U ′

is a finite set of points such that a ∈ Y ∩ U ′, thus yielding the existence of

an open neighbourhood U ′′ ⊆ U ′ of a with {a} = Y ∩ U ′′, a contradiction

to γ being non-degenerate. Since U is a semi-algebraic neighbourhood of a,

there exists an open semi-algebraic subset U ′ ⊆ U such that a ∈ U ′, therefore

∅ ̸= intX(Y ∩ U ′) ⊆ intX(Y ∩ U), as required.

(ii) a ∈ clX(Y ) \ Y . In this case a /∈ Y ∩ U and a ∈ ∂X(Y ), where ∂X(Y ) is the

boundary of Y in X. Assume for contradiction that intX(Y ∩U) = ∅; then Y ∩U

is a finite set of points by o-minimality, therefore there exists a semi-algebraic

neighbourhood U ′ of a such that U ′ ⊆ U and Y ∩ U ′ = ∅, a contradiction to

a ∈ ∂X(Y ).

Conversely let Y ∈ γ; it will be shown that the condition in the lemma is not satisfied

if γ is one of the germs in items (i) and (ii) in Example 2.3.22:
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(i) a ∈ Y and a is isolated in Y . In this case there exists an open neighbourhood U

of a such that Y ∩U = {a}, and since X has no isolated points, {a} is not open

in X, therefore intX(Y ∩ U) = ∅.

(ii) a /∈ cl(Y ). In this case a ∈ intX(X \ Y ), therefore there exists an open neigh-

bourhood U of a such that Y ∩ U = ∅, and thus intX(Y ∩ U) = ∅.

Recall from [BCR98, Definition 2.4.2] or [Dri98, p. 19, Definition 3.5] that Y ⊆ X

is semi-algebraically connected if for all disjoint semi-algebraic subsets Y1, Y2 ⊆ Y

which are closed in Y , if Y = Y1 ∪ Y2, then either Y = Y1 or Y = Y2; in particular,

Y := ∅ is semi-algebraically connected. Moreover, Y is semi-algebraically connected

if and only if Y is semi-algebraically path connected, see [BCR98, Proposition 2.5.13];

in fact:

Remark 2.3.25. Let Y ⊆ X be semi-algebraic with non-empty interior; then Y ⊆ X is

semi-algebraically connected if and only if Y is semi-algebraically arc-connected, that

is, if and only if for all distinct a, b ∈ Y there exists a continuous semi-algebraic map

σ : [0, 1] −→ X such that σ(0) = a and σ(1) = b which is a homeomorphism onto

its image. This actually holds for any Y with non-empty interior which is definable

and definably connected in an o-minimal expansion of an abelian o-group: one can

easily check that the proof of [Dri98, Chapter 6, Proposition 3.2] can be used mutatis

mutandis to show that any two distinct points in such Y can be connected by an

injective definable path, and such a path is a homeomorphism onto its image by

[Dri98, Chapter 6, Corollary 1.12].

Definition 2.3.26. A half-branch of X (centred) at a is a non-degenerate germ β of X

at a such that for any Y ∈ β, a ∈ Y and there exists a semi-algebraic neighbourhood

U of a such that Y ∩ (U \ {a}) is semi-algebraically connected. A half-branch of X is

a half-branch of X at a for some a ∈ X.

Remark 2.3.27. (i) The condition that a ∈ Y for all Y ∈ β in Definition 2.3.26

is needed to avoid “double counting” of half-branches: if this condition were

not included, then (0, 1) and [0, 1) would be representatives of two distinct half-

branches of X := R at a := 0, see Example 2.3.22 (iii). Note also that by

Example 2.3.22 (iii) one could replace the condition that a ∈ Y for all Y ∈ β in

Definition 2.3.26 by a /∈ Y for all Y ∈ β in order to define what a half-branch is.
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(ii) In [Phi15, Definition 2.3.1.2], neither the non-degeneracy condition nor the con-

dition discussed in item (i) above is included in Phillips’ definition of a branch.

Every half-branch in the sense of Definition 2.3.26 is a branch in the sense of

Phillips, but the converse is not true: in particular, the germ in Example 2.3.22

(i) is a branch in the sense of Phillips, and (0, 1) and [0, 1) are representatives of

two distinct branches of X := R at a := 0 in the sense of Phillips.

(iii) IfX is furthermore a real algebraic curve, then it follows from Example 2.3.22 (iii)

that half-branches β of X at a in the sense of Definition 2.3.26 are in bijective

correspondence with half-branches of X centred at a in the sense of [BCR98,

Definition 9.5.2]; in particular a germ γ of X at a is a half-branch in the sense of

Definition 2.3.26 if and only if {Y \ {a} | Y ∈ γ} is a half-branch of X centred

at a in the sense of [BCR98, Definition 9.5.2].

Lemma 2.3.28 (cf. Proposition 9.5.1 in [BCR98]). A germ γ of X at a is a half-

branch if and only if for every C ∈ γ there exists Y ∈ γ with Y ⊆ C together with a

semi-algebraic homeomorphism σ : [0, 1]R −→ Y such that σ(0) = a, where [0, 1]R is

the closed unit interval in R.

Proof. Suppose first that γ is a half-branch and let C ∈ γ. Pick a semi-algebraic

neighbourhood U of a such that C ∩ (U \ {a}) is semi-algebraically connected; then

Y := C ∩ U ∈ γ is a semi-algebraically path connected semi-algebraic subset of

X with non-empty interior (Lemma 2.3.24), therefore, by replacing U with a semi-

algebraic neighbourhood U ′ of a such that U ′ ⊊ U if necessary, Y is semi-algebraically

homeomorphic to [0, 1] via a map σ as in the statement of the lemma. The converse

is straightforward from the definition of half-branch.

Definition 2.3.29. (i) A curve interval C of X at a is a semi-algebraic subset

C ⊆ X for which there exists a semi-algebraic homeomorphism σ : [0, 1] −→ C

such that σ(0) = a; a curve interval of X is a curve interval of X at a for some

a ∈ X.

(ii) Let β be a half-branch of X at a. A semi-algebraic subset C ⊆ X is a curve

interval of β if C is a curve interval at a such that C ∈ β (such C always exists

by Lemma 2.3.28).
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Example 2.3.30. Let a ∈ X and suppose that X has n ∈ N half-branches βi of X at

a. For each ε > 0, let Bε(a) be the closed ball in X of radius ε around a. Then for

small enough ε > 0, the set Bε(a)\{a} has n semi-algebraically connected components

U , and each clX(U) = U ∪ {a} is a curve interval of some half-branch βi.

Lemma 2.3.31. Let C ⊆ X be closed and semi-algebraic. The following are equiva-

lent:

(i) C is a curve interval (i.e., C is semi-algebraically homeomorphic to [0, 1]).

(ii) C is semi-algebraically connected and there exist distinct a, b ∈ C such that C

is minimal (under subset inclusion) amongst closed, semi-algebraic, and semi-

algebraically connected D ⊆ X with a, b ∈ D.

Proof. The proof of the implication (i) ⇒ (ii) is straightforward, so suppose that

(ii) holds and let a, b ∈ C witness this; since a, b ∈ C are distinct and C is semi-

algebraically connected, C must have non-empty interior, therefore by Remark 2.3.25

there exists a semi-algebraic map σ : [0, 1] −→ C such that σ(0) = a and σ(1) = b

which is a homeomorphism onto its image; such σ is surjective by the minimality

condition on C and by [Dri98, Chapter 6, Corollary 1.12], therefore (i) follows.

Definition 2.3.32. Let a ∈ X. The branching degree of a is the number of half-

branches of X at a.

Note that by o-minimality the branching degree of each a ∈ X is finite, and since

it is assumed that X does not have any isolated points, each a ∈ X has branching

degree at least 1.

To every half-branch β of X one can associate two objects:

Definition 2.3.33. Let β be a half-branch of X. Define

pβ := {f ∈ Cs.a.(X) | ∃Y ∈ β such that f↾Y = 0}

and

fβ := {C ⊆ X | C is closed and semi-algebraic, and C ∈ β}.

Clearly pβ is an in ideal of Cs.a.(X), and the elements in Cs.a.(X)/pβ are the germs

of functions in Cs.a.(X) at the half-branch β. The relationship between pβ, fβ and OR
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is given in Proposition 2.3.35. First is needed an equivalent description of the lattice

of closed and semi-algebraic subsets of X:

Lemma 2.3.34. For each f ∈ Cs.a.(X), let {f = 0} := {x ∈ X | f(x) = 0} be its

zero set. The set LX := {{f = 0} | f ∈ Cs.a.(X)} is exactly the lattice of closed and

semi-algebraic subsets of X.

Proof. This follows from the fact that any closed and semi-algebraic S ⊆ Rm is the

zero set of its distance function, which is continuous and semi-algebraic, see [BCR98,

Proposition 2.2.8]. Let C ⊆ X closed and semi-algebraic; the proof that follows shows

an alternative construction of an f ∈ Cs.a.(X) such that C = {f = 0}. Consider the

following cases:

Case 1: ∂X(C) = ∅. In this case C is clopen in X (see for example [Men62, p 103,

Exercise 7]), therefore the map f : X −→ R given by f(x) := 0 if x ∈ C and f(x) := 1

if x ∈ X \ C is continuous and semi-algebraic, and C = {f = 0}.

Case 2: ∂X(C) ̸= ∅. By o-minimality and since X is 1-dimensional, ∂X(C) :=

{a1, . . . , am} for some n ∈ N. For each i ∈ [m], let βi1, . . . , βini
be all the half-branches

of X at ai, where ni is the branching degree of ai. Choose ε > 0 small enough such

that for each i ∈ [m] the following conditions hold:

1. For all i ∈ [m], the set Bε(ai) \ {ai} (see Example 2.3.30) has ni connected

components Ui1, . . . , Uini
and Cij := clX(Uij) = Uij ∪ {ai} is a curve interval of

βij for all j ∈ [ni].

2. Cij1 ∩ Cij2 = {ai} for all i ∈ [m] and all j1, j2 ∈ [ni] with j1 ̸= j2.

3. Ci1j1 ∩ Ci2j2 = ∅ for all i1, i2 ∈ [m] such that i1 ̸= i2 and all j1 ∈ [ni1 ] and

j2 ∈ [ni2 ].

4. For all i ∈ [m] and all j ∈ [ni], either Cij ⊆ C or Cij ∩ C = {ai}.

For each i ∈ [m] and each j ∈ [ni], let σij : [0, 1]R −→ Cij be a semi-algebraic

homeomorphism such that σij(0) = ai. Let D := C ∪
⋃
i∈[m]

⋃
j∈[ni]

Cij and define the

map D −→ R by

f0(x) :=

0 if x ∈ C

σ−1
ij (x) if x ∈ Cij and Cij ∩ C = {ai}.
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f0 is a well-defined continuous semi-algebraic function D −→ R and f(b) = 1 for

every b ∈ ∂X(D) by construction. In particular, the map f : X −→ R defined by

f(x) := f0(x) if x ∈ D and f(x) := 1 if x ∈ clX(X \ D) is continuous and semi-

algebraic, and C = {f = 0} by construction, as required.

Proposition 2.3.35. Let β be a half-branch of X centred at a ∈ X.

(i) pβ is a prime ideal of A and the ring of germs Cs.a.(X)/pβ is canonically iso-

morphic to OR (see Definition 2.3.15). In particular, let C be any curve interval

of β; then pβ = ker(FC), where FC is the composite R-algebra homomorphism

FC : Cs.a.(X) −↠ Cs.a.(C) −↠ Cs.a.([0, 1]R) −↠ OR

f 7−→ f↾C 7−→ f↾C ◦ σ 7−→ Φ(f↾C ◦ σ),

σ : [0, 1]R −→ C is any semi-algebraic homeomorphism such that σ(0) = a, and

Φ : Cs.a.([0, 1]R) −↠ OR is the ring homomorphism defined in Lemma 2.3.18.

(ii) Let [−]β : Cs.a.(X) −↠ OR be the canonical surjection of item (i), that is,

[f ]β := f/pβ = Φ(f↾C ◦ σ)

for any curve interval C of β and any semi-algebraic homeomorphism σ : [0, 1]R

−→ C such that σ(0) = a. Then [f ]β/m = f(a)/m for every f ∈ Cs.a.(X). In

particular, the following are equivalent for all f, g ∈ Cs.a.(X), where =
≤ is either

= or ≤:

(a) [f ]β/m
=
≤ [g]β/m.

(b) f(a) =
≤ g(a).

(iii) fβ is a prime filter in the lattice LX := {{f = 0} | f ∈ Cs.a.(X)} of closed

semi-algebraic subsets of X (see Lemma 2.3.34).

(iv) Let f, g ∈ Cs.a.(X) and set {f =
≤ g} := {x ∈ X | f(x) =

≤ g(x)}, where =
≤ is either

= or ≤. The following are equivalent:

(a) [f ]β
=
≤ [g]β.

(b) {f =
≤ g} ∈ fβ.
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(c) There exists a curve interval C of β such that C ⊆ {f =
≤ g}.

Proof. (i). It suffices to show that pβ = ker(FC), where C is any curve interval of β

and FC is defined as in item (i). For one inclusion one has

ker(FC) = {f ∈ Cs.a.(X) | Φ(f↾C ◦ σ) = 0}

= {f ∈ Cs.a.(X) | f↾C ◦ σ ∈ ker(Φ)}
(1)
= {f ∈ Cs.a.(X) | ∃ε > 0 such that (f↾C ◦ σ)↾[0,ε] = 0}

= {f ∈ Cs.a.(X) | ∃ε > 0 such that f↾σ([0,ε]) = 0}
(2)

⊆ pβ,

where (1) follows by Lemma 2.3.18 and (2) follows since σ([0, ε]) ∈ β. For the other

inclusion, pick f ∈ Cs.a.(X) and Y ∈ β such that f↾Y = 0. Then C ∩ Y ∈ β, therefore

by Lemma 2.3.28 there exists a curve interval Y ′ of β such that Y ′ ⊆ Y ∩ C; such

curve interval Y ′ is of the form σ([0, ε′]) for some ε′ ∈ (0, ε), therefore f ∈ ker(FC)

follows by the chain of equalities above.

(ii). Let f, C, and σ be as in item (ii). Then [f ]β/m = Φ(f↾C ◦ σ)/m = (f↾C ◦

σ)(0)/m = f(σ(0))/m = f(a)/m by Lemma 2.3.18. The equivalence of (ii) (a) and (ii)

(b) follows thus immediately from the fact that r 7→ r/m is an isomorphism of real

closed fields R −→ OR/m, see the discussion after Definition 2.3.15.

(iii). That fβ is a filter in LX is clear by the definition of half-branch given in

Definition 2.3.26. To show that fβ is prime, suppose that C ∪ D ∈ fβ, so that there

exist f, g ∈ Cs.a.(X) such that C = {f = 0}, D = {g = 0}, and C∪D = {fg = 0} ∈ β.

By Lemma 2.3.28, there exists a curve interval Y of β such that Y ⊆ {fg = 0}, that

is, such that (fg)↾Y = 0, therefore fg ∈ pβ. It follows by (i) that either f ∈ pβ or

g ∈ pβ, therefore either there exists Y1 ∈ β with Y1 ⊆ {f = 0} = C (and thus C ∈ β),

or there exists Y2 ∈ β with Y2 ⊆ {g = 0} = D (and thus D ∈ β).

(iv). The equivalence of (b) and (c) is clear by Lemma 2.3.28, so it suffices to prove

the equivalence of (a) and (c). Note also that for all f, g ∈ Cs.a.(X),

[f ]β ≤ [g]β ⇐⇒ min{[f ]β, [g]β} = [f ]β
(∗)
= [f ∧ g]β = [f ]β,

where ∧ is the meet operation in the real closed ring Cs.a.(X) (more precisely, f ∧ g ∈

Cs.a.(X) is given by (f ∧g)(x) := min{f(x), g(x)}) and (∗) follows from Theorem 2.3.2
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(III), therefore it suffices to consider the case where =
≤ is =. Then

[f ]β = [g]β ⇐⇒ [f − g]β = 0 ⇐⇒ f − g ∈ pβ ⇐⇒ ∃Y ∈ β such that Y ⊆ {f = g},

and the statement on the right hand side of the equivalences is in turn equivalent to

(c) by Lemma 2.3.28, concluding thus the proof.

Example 2.3.36. Each a ∈ X := R has exactly two half-branches, denoted by a−

and a+. The sets [a− 1, a] and [a, a+1] are curve intervals of a− and a+, respectively,

therefore pa− := {f ∈ Cs.a.(R) | ∃ε ∈ (0, 1) such that f↾[a−ε,a] = 0} and pa+ := {f ∈

Cs.a.(R) | ∃ε ∈ (0, 1) such that f↾[a,a+ε] = 0} by Proposition 2.3.35 (i), and if ma :=

{f ∈ Cs.a.(R) | f(a) = 0}, then ma/pa± is the maximal ideal m in OR
∼= Cs.a.(R)/pa±

by Proposition 2.3.35 (ii).

Corollary 2.3.37. Let a ∈ X and let β1, . . . , βn be all the half-branches of X at a.

The ring of germs of Cs.a.(X) at a (that is, the localization of Cs.a.(X) at the maximal

ideal ma := {f ∈ Cs.a.(X) | f(a) = 0}) is canonically isomorphic to the n-fold fibre

product

(Cs.a.(X)/pβ1 ×R Cs.a.(X)/pβ2)×R . . . )×R Cs.a.(X)/pβn). (∗)

Proof. Consider the canonical map Cs.a.(X)ma −→
∏n

i=1Cs.a.(X)/pβi sending each

germ of a function f ∈ Cs.a.(X) at a to the tuple in
∏n

i=1Cs.a.(X)/pβi whose coordinates

are the germs of f at each of the half-branches βi of X at a. This map is an injective

ring homomorphism with image (∗).

2.4 Lattice-ordered abelian groups

In this section the theory of lattice-ordered abelian groups (ℓ-groups for short) is pre-

sented as needed in order to develop the model-theoretic machinery on which Chapter 3

builds upon, namely the two-sorted model-theoretic analysis of lattice-ordered abelian

groups of functions as developed by Shen and Weispfenning in [SW87a], see Subsection

2.4.3. In particular, the focus in Subsections 2.4.1 and 2.4.2 is to give functional repre-

sentations of arbitrary lattice-ordered abelian groups (see Corollary 2.4.7) and to relate

these functional representations with some basic structural properties of ℓ-groups in

order to analyze their model-theory via the Shen-Weispfenning theorem.
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Standard references for the theory of ℓ-groups are [Dar95], [BKW77], and [AF88].

The material present in this section, and in particular that in Subsection 2.4.3, follows

largely the exposition given in [Tre22] and [Tre].

2.4.1 Preliminaries on ℓ-groups

Definition 2.4.1. (i) A lattice-ordered abelian group (abbreviated as ℓ-group) is an

abelian group (G,+,−, 0) together with a partial order ≤ such that (G,≤) is a

lattice and such that

f ≤ g =⇒ f + h ≤ g + h

for all f, g, h ∈ G. An o-group is an ℓ-group which is totally ordered.

(ii) A function f : G −→ H between ℓ-groups G and H is an ℓ-homomorphism if it

is both a group homomorphism and a lattice homomorphism; if f is moreover

injective it is an ℓ-group embedding.

(iii) Write ℓ-Gp for the category of ℓ-groups together with ℓ-homomorphisms.

Direct products of o-groups are ℓ-groups under componentwise group and lattice

operations, therefore the set of all functions X −→ N from a non-empty set X to an

o-group N is an ℓ-group; in fact, every ℓ-group is isomorphic to an ℓ-subgroup of such

ℓ-group of functions, see Corollary 2.4.7. Note also that Note that the additive group

of any real closed ring (Definition 2.3.1) is an ℓ-group.

Throughout the remaining part of this subsection, G is an ℓ-group.

Definition 2.4.2. (i) An ℓ-ideal I ⊆ G is a convex ℓ-subgroup of G. If S ⊆ G is a

non-empty set, define

ℓ(S) :=
⋂

{I ⊆ G | I is an ℓ-ideal and S ⊆ I}

to be ℓ-ideal generated by S. If S = {f} for some f ∈ G, set ℓ(f) := ℓ({f}); ℓ-

ideals of the form ℓ(f) for some f ∈ G are principal ℓ-ideals. Write Prin-ℓ-Id(G)

for the set of all principal ℓ-ideals of G.

(ii) A prime ℓ-ideal is an ℓ-ideal p ⊆ G such that for all f, g ∈ G, if 0 ≤ f ∧ g and

f ∧g ∈ G, then f ∈ G or g ∈ G. Write ℓ-Spec(G) for the set of all prime ℓ-ideals
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of G, so in particular G ∈ ℓ-Spec(G); this slightly strays away from the standard

definition of a prime ideal of an ℓ-group, which assumes p ̸= G.

Lemma 2.4.3. (i) The ℓ-ideals of G are exactly the kernels of ℓ-group homomor-

phisms G −→ H onto ℓ-groups H, and prime ℓ-ideals are exactly the kernels of

ℓ-group homomorphisms G −→ N onto o-groups N .

(ii) If f ∈ G, then ℓ(f) = {g ∈ G | ∃n ∈ N such that |g| ≤ n|f |} and ℓ(f) = ℓ(|f |),

where |f | := f ∨ −f is the absolute value of f . Moreover,

ℓ(f) + ℓ(g) = ℓ(|f | ∨ |g|) and ℓ(f) ∩ ℓ(g) = ℓ(|f | ∧ |g|);

in particular, Prin-ℓ-Id(G) ∪ {G} is a bounded and distributive lattice under

subset inclusion, with join and meet operations given by sum and intersection

(respectively), with bottom element {0}, and with top element G.

Proof. Item (i) is [BKW77, Corollaire 2.3.7 and Proposition 2.4.3], and the first part of

item (ii) is [BKW77, Corollaire 2.2.4]. For the second part of item (ii), note first that

|f | ≥ 0 for all f ∈ G (see [BKW77, p. 23]), therefore since ℓ(f) = ℓ(|f |) it suffices to

show that ℓ(f)+ℓ(g) = ℓ(f∨g) and ℓ(f)∩ℓ(g) = ℓ(f∧g) for f, g ∈ G such that 0 ≤ f, g.

If f, g ∈ G are such that 0 ≤ f, g, then ℓ(f)∩ℓ(g) = ℓ(f∧g) and ℓ(f∨g) = ℓ(ℓ(f)∪ℓ(g))

by [BKW77, Proposition 2.2.10] (or [AF88, Proposition 1.2.3]), and it will be shown

that that ℓ(ℓ(f) ∪ ℓ(g)) = ℓ(f) + ℓ(g). Clearly ℓ(f) + ℓ(g) ⊆ ℓ(ℓ(f) ∪ ℓ(g)), and if

a ∈ ℓ(ℓ(f) ∪ ℓ(g)), then a+, a− ∈ ℓ(ℓ(f) ∪ ℓ(g)), where a+ := a ∨ 0 and a− := −a ∨ 0;

since a = a+ − a− (see [BKW77, p. 22]), it suffices to show that a+, a− ∈ ℓ(f) + ℓ(g).

By [BKW77, Proposition 2.2.3], there exist h1 ∈ ℓ(f) and h2 ∈ ℓ(g) such that |a+| ≤

|h1| + |h2|, therefore it follows by the Riesz decomposition theorem [Dar95, Theorem

3.11] and by convexity of ℓ(f) and ℓ(g) that |a+| ∈ ℓ(f) + ℓ(g). Since |a+| = |a ∨ 0| =

(a∨0)∨−(a∨0) = (a∨0∨−a)∧ (a∨0) = a∨0 = a+, it follows that a+ ∈ ℓ(f)+ ℓ(g),

and a similar argument shows that a− ∈ ℓ(f) + ℓ(g).

Remark 2.4.4. An element 0 < u ∈ G is a strong order unit if ℓ(u) = G; so if G has

a strong order unit then Prin-ℓ-Id(G) is a bounded and distributive lattice by Lemma

2.4.3 (ii). For example, the constant function with value 1 is a strong order unit in the

ℓ-group C∗(X) of bounded continuous real-valued functions on a topological space X.

On the other hand, the ℓ-group of all functions N −→ R has no strong order unit.
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Theorem 2.4.5 (Weinberg’s theorem). Let H ⊆ G be a subgroup. The sublattice of

G generated by H is a subgroup of G; in particular, if S ⊆ G is any non-empty subset,

then the sub-ℓ-group of G generated by S consists of the elements of G of the form

m∨
i=1

n∧
j=1

fij, (2.5)

where each fij is in the subgroup of G generated by S.

Proof. See Theorem 6.7 in [Dar95]; given a, b ∈ G of the form (2.5), the proof actually

shows how to construct c, d ∈ G of the form (2.5) such that a+ b = c and −a = d.

2.4.2 The ℓ-spectrum of an ℓ-group

Much in the same way that the set of prime ideals of a ring is equipped with a spectral

topology (see Section 2.2), the set ℓ-Spec(G) of all prime ℓ-ideals of an ℓ-group G

also carries a spectral topology, see Definition 2.4.8 and Theorem 2.4.9. Moreover,

in analogy to the case of real closed rings, ℓ-Spec(G) serves as a set on which G can

be represented as an ℓ-group of functions, and the basis of closed sets for the spectral

topology on ℓ-Spec(G) can be recovered using the principal ℓ-ideals of G, see Corollary

2.4.7 and Theorem 2.4.9 (IV), respectively.

Throughout this subsection, G is an ℓ-group.

Proposition 2.4.6 (Abstract Nullstellensatz for ℓ-groups). If S ⊆ G is any non-empty

set, then

ℓ(S) =
⋂

{p ∈ ℓ-Spec(G) | S ⊆ p}.

Proof. Since the ℓ-group G is abelian, it is representable, see the beginning of [AF88,

Chapter 4] and [AF88, Corollary 4.1.2], as well as [BKW77, Section 4.2] together

with [BKW77, Proposition 4.2.9] and [BKW77, pp. 26, 1.6.1]. In particular, every

regular ℓ-ideal (see [BKW77, Definition 4.2.3]) is prime by [BKW77, Theoreme 4.2.5],

therefore

ℓ(S)
(∗)
=
⋂

{I ⊆ G | I is a regular ℓ-ideal and S ⊆ I}

⊇
⋂

{I ⊆ G | I is a prime ℓ-ideal and S ⊆ I}

⊇
⋂

{I ⊆ G | I is an ℓ-ideal and S ⊆ I} = ℓ(S),

where (∗) holds by [BKW77, pp. 72, 4.2.4].
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Corollary 2.4.7. Every ℓ-group G is isomorphic to a sub-ℓ-group of the ℓ-group of

all functions X −→ N for some non-empty set X and some o-group N ; moreover,

one may take X = ℓ-Spec(G), or X = ℓ-Spec∗(G) := {p ∈ ℓ-Spec(G) | p ̸= G}, or

X := ℓ-Specmin(G) := {p ∈ ℓ-Spec(G) | p is minimal in the poset (ℓ-Spec(G),⊆)}.

Proof. The proof is analogous to that of Lemma 2.3.3. Note first that

(0) = ℓ(0)
(1)
=

⋂
p∈ℓ-Spec(G)

p
(2)
=

⋂
p∈ℓ-Spec∗(G)

p
(3)
=

⋂
p∈ℓ-Specmin(G)

p,

where (1) follows by Proposition 2.4.6, and (2) and (3) are clear by definition of

ℓ-Spec∗(G) and ℓ-Specmin(G), respectively. Let now X be any of the sets ℓ-Spec(G),

ℓ-Spec∗(G), or ℓ-Specmin(G); by the above and Lemma 2.4.3 (i), the canonical map

G −→
∏
p∈X

G/p

f 7−→ (f/p)p∈X

is an ℓ-group embedding. For each p ∈ X, the total order of the o-group G/p extends

canonically to a total order on its divisible hull d.h.(G/p) in such a way that d.h.(G/p)

becomes an o-group and G/p ⊆ d.h.(G/p) is an o-group embedding, see [Mar02,

Lemma 3.1.16]. Since the {+,−, 0,≤}-theory of divisible o-groups is complete and

has quantifier elimination (see [Mar02, Corollary 3.1.17]), this theory has the joint

embedding property by [CK90, Proposition 3.5.11], therefore there exists a divisible

o-group N such that d.h.(G/p) ⊆ N for all p ∈ X, therefore the composite map

G −→
∏
p∈X

G/p
⊆−→
∏
p∈X

d.h.(G/p)
⊆−→
∏
p∈X

N = NX

is an ℓ-group isomorphism onto its image, as required.

Definition 2.4.8. Define the ℓ-spectrum of G to be the set ℓ-Spec(G) of all prime

ℓ-ideals of G equipped with the topology given by taking the sets

D(f) := {p ∈ ℓ-Spec(G) | f /∈ p}

as a subbasis of open sets with f ∈ G; write also V (f) := {p ∈ ℓ-Spec(G) | f ∈ p}.

Theorem 2.4.9. The topological space ℓ-Spec(G) is a spectral space and the assign-

ment G 7→ ℓ-Spec(G) yields a contravariant functor ℓ-Spec : ℓ-Gp −→ Spec. More-

over:
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(I)
◦
K(ℓ-Spec(G)) = {D(f) | f ∈ G} ∪ {ℓ-Spec(G)} and K(ℓ-Spec(G)) = {V (f) |

f ∈ G} ∪ {∅}.

(II) {G} is a closed point in ℓ-Spec(G); in particular, the set ℓ-Spec∗(G) := {p ∈

ℓ-Spec(G) | p ̸= G} of proper prime ℓ-ideals of G is an open subspace of

ℓ-Spec(G).

(III) The following are equivalent:

(i) G has a strong order unit (see Remark 2.4.4).

(ii) There exists u ∈ G such that D(u) = ℓ-Spec∗(G).

(iii) There exists u ∈ G such that V (u) = {G}.

(iv) The space ℓ-Spec∗(G) is quasi-compact.

(v) ℓ-Spec∗(G) is proconstructible in ℓ-Spec(G).

(IV) The map

K(ℓ-Spec(G)) −→ Prin-ℓ-Id(G) ∪ {G}

V (f) 7−→ ℓ(f)

∅ 7−→ G

is an anti-isomorphism of bounded distributive lattices.

Proof. In [Sch13, Section 2] it is shown that {V (f) | f ∈ G} is a subbasis of open

sets for a spectral topology on ℓ-Spec(G); and that {V (f) | f ∈ G} ∪ {∅} is the

set of quasi-compact open12 subsets for this topology on ℓ-Spec(G), therefore the first

statement of the theorem and item (I) follow from Proposition 2.2.3 (i) and [Sch13,

Proposition 2.10]; moreover, {G} =
⋂
f∈G V (f), from which (II) follows.

For (III), note that if u ∈ G, then

ℓ(u) = G
(∗)⇐⇒ u /∈ p for all p ∈ ℓ-Spec∗(G) ⇐⇒ D(u) = ℓ-Spec∗(G),

12Since G ∈ ℓ-Spec(G) by definition, it follows that there is no f ∈ G such that V (f) = ∅,
as otherwise G /∈ V (f), that is, f /∈ G. In particular, some statements in [Sch13] need slight
modifications to hold true: for example, [Sch13, Corollary 2.5] holds for non-empty quasi-compact
open subsets instead of for all quasi-compact opens.



CHAPTER 2. PRELIMINARIES 59

where (∗) follows by Proposition 2.4.6, and this shows the equivalence of (i), (ii), and

(iii). The equivalence of (ii) and (iv) is immediate from (I) and from the fact that

ℓ-Spec∗(G) is open in ℓ-Spec(G), and the equivalence of (iv) and (v) is obvious.

Finally, since ℓ(f) = ℓ(|f |) by Lemma 2.4.3 (ii) and V (f) = V (|f |) by [Sch13,

Lemma 2.4. (a)] for all f ∈ G, the map in (IV) is bijective; moreover, ℓ(f) =
⋂

p∈V (f) p

by Proposition 2.4.6, from which it follows that V (f) ⊆ V (g) if and only if ℓ(g) ⊆

ℓ(f).

Remark 2.4.10. The space ℓ-Spec∗(G) of proper prime ℓ-ideals of G is a generalized

spectral space, that is, it is a T0 sober space with a basis of quasi-compact opens which is

stable under non-empty finite intersections, see for example [CGL99]. Slightly abusing

notation, write
◦
K(ℓ-Spec∗(G)) := {D(f) | f ∈ G} and K(ℓ-Spec∗(G)) := {V (f) | f ∈

G}; it follows by Theorem 2.4.9 (I) that {D(f) | f ∈ G} is a basis of quasi-compact

opens for ℓ-Spec∗(G) which is closed under non-empty finite intersections.

2.4.3 The Shen-Weispfenning theorem

Let G be an ℓ-group. By Corollary 2.4.7 one may regard G as an ℓ-group of functions

X −→ N , where X is a non-empty set and N is an o-group. To any such ℓ-group of

functions one can associate its lattice of zero sets LG,X := {{f ≥ 0} | f ∈ G}, where

{f ≥ 0} := {x ∈ X | f(x) ≥ 0}; that each such {f ≥ 0} is indeed a zero set and

LG,X is lattice follows easily from the lattice structure on the ℓ-group G, see Remark

2.4.14. In particular, the ℓ-group of functions G and the lattice of zero sets LG,X can be

assembled into a two-sorted model-theoretic structure (G,LG,X) connecting the sort of

G (called the home sort) and the sort of LG,X (called the space sort) via the function

G −↠ LG,X given by f 7→ {f ≥ 0}. Such two-sorted structures are called for brevity

standard structures, see Definition 2.4.15.

Loosely speaking, the Shen-Weispfenning theorem in [SW87a] (see also [SW87b])

states that if the ℓ-group G of functions X −→ N is divisible and it satisfies the patch-

ing condition, then every first order property of the two-sorted structure (G,LG,X)

can be reduced to a first-order property of the lattice of zero sets LG,X ; in particular,

every first-order property of G can be reduced to a first-order property of LG,X . More
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precisely, the Shen-Weispfenning theorem states that the theory of all standard struc-

tures (G,LG,X), where G is a divisible ℓ-group of functions X −→ N which is closed

under patching, eliminates quantifiers relative to the space sort, see Theorem 2.4.29.

The patching condition on an ℓ-group G of functions X −→ N (see Definition

2.4.19) can be seen as stating that a particular kind of formula in the two-sorted

structure (G,LG,X) is equivalent to a quantifier-free formula. This patching condition

is not a property of the ℓ-group G, but rather it is a property of the functional represen-

tation G ⊆ NX of G. In particular, Proposition 2.4.23 shows that if G is an arbitrary

ℓ-group, then G is closed under patching when regarded as an ℓ-group of functions

on ℓ-Spec∗(G) (see Corollary 2.4.7), therefore the Shen-Weispfenning theorem can be

applied to arbitrary divisible ℓ-groups.

This section begins by setting-up the required two-sorted framework following the

template given in Subsection 2.1.1, see Definition 2.4.15. This is followed by prov-

ing a normal form (♥) for formulas without home quantifiers in standard structures

(G,LG,X), see Lemma 2.4.17, and then showing that eliminating a home quantifier in

formulas of a particular form (♣) reduces to eliminating home quantifiers in formulas of

very simple form, see Lemma 2.4.18. After that, the patching condition is introduced

in Definition 2.4.19 and both examples and non-examples of ℓ-groups satisfying the

patching condition are given. Next, Proposition 2.4.25 shows how the patching condi-

tion is used to eliminate home quantifiers in the simple formulas of Lemma 2.4.18, and

this should be regarded as the main elimination step in the Shen-Weispfenning theo-

rem. Theorem 2.4.29 (the Shen-Weispfenning theorem) then ties everything together

by showing that every formula in divisible standard structures which are closed under

patching is equivalent to one of the form (♥). The section concludes with applica-

tions of Theorem 2.4.29 to decidability; in particular, Proposition 2.4.34 and Corollary

2.4.35 show how the Shen-Weispfenning theorem applies to the additive ℓ-group reduct

of a real closed ring when regarded as an ℓ-group of functions on Spec(A) (see Lemma

2.3.3).

Definition 2.4.11. Set L gp := {+,−, 0} to be the language of groups and L ℓ-gp :=

{+,−, 0,∨,∧,≤} to be the language of ℓ-groups.

Every ℓ-group can be regarded as an L ℓ-gp-structure in the canonical way. Clearly

the class of ℓ-groups is elementary in the language L ℓ-gp.
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Corollary 2.4.12. Every L ℓ-gp-term t(x) is effectively equivalent modulo the L ℓ-gp-

theory of ℓ-groups (see Definition 2.1.14) to a term of the form
∨m
i=1

∧n
j=1 tij(x), where

each tij(x) is an L gp-term.

Proof. Immediate from Theorem 2.4.5 and its proof.

Definition 2.4.13. Let G be an ℓ-group of functions X −→ N , where X is a non-

empty set and N is an o-group. Define {f = 0} := {x ∈ X | f(x) = 0} to be the

zero-set of f , and define {f ≥ 0} and {f > 0} analogously.

Remark 2.4.14. Let X be a non-empty set and N be an o-group. For all functions

f, g, h : X −→ N the following identities hold:

{f ∨ g ≥ h} = {f ≥ h} ∪ {g ≥ h}, {f ∧ g ≥ h} = {f ≥ h} ∩ {g ≥ h},

{f ∨ g ≤ h} = {f ≤ h} ∩ {g ≤ h}, and {f ∧ g ≤ h} = {f ≤ h} ∪ {g ≤ h}.

Moreover, {f = 0} = {f ≥ 0}∩{−f ≥ 0} = {f ∧−f ≥ 0} and {f ≥ 0} = {f ∧0 = 0}.

Definition 2.4.15. (I) Let L st.str. be the 2-sorted language of standard structures :

(i) Π ∪̇ Σ is a partition of the sorts of L st.str., where Π := {Shome} and Σ :=

{Sspace} (Shome is the home sort and Sspace is the space sort).

(ii) L st.str.
↾Π = L st.str.

↾{Shome} := L ℓ-gp, and L st.str.
↾Σ = L st.str.

↾{Sspace} := L lat(⊤) :=

{⊔,⊓,⊑,⊤}; and

(iii) L st.str. \ (L↾Π ∪̇ L↾Σ) := {{(−) ≥ 0}}, where {(−) ≥ 0} is a unary function

symbol of sort (Shome, Sspace).

(II) A standard structure is an L st.str.-structure such that:

(i) the home sort is interpreted as an ℓ-group G of functions X −→ N (where

X is a set and N is an o-group);

(ii) the space sort is interpreted as the lattice LG,X := {{f ≥ 0} | f ∈ G} of

zero sets of G ⊆ NX (cf. Remark 2.4.14); and

(iii) the unary function symbol {(−) ≥ 0} is interpreted as the map G −↠ LG,X

given by f 7→ {f ≥ 0}.
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(III) The L st.str.-theory of standard structures is the common L st.str.-theory T st.str. of

all standard structures, i.e.,

T st.str. :=
⋂

{ThL st.str.(G ) | G is a standard structure},

where ThL st.str.(G ) is the L st.str.-theory of the L st.str.-structure G .

Remark 2.4.16. It follows from the functional representation of ℓ-groups given in Corol-

lary 2.4.7 that every ℓ-group has at least one expansion to a standard structure, namely,

after identifying G with an ℓ-subgroup of functions ℓ-Spec∗(G) −→ N for some o-group

N , the set K(ℓ-Spec∗(G)) is exactly the lattice of zero-sets of G (see Remark 2.4.10),

hence the pair (G,K(ℓ-Spec∗(G))) is a standard structure.

Lemma 2.4.17. Every L st.str.-formula φ(z, ζ) without home quantifiers is equivalent

modulo T st.str. to an L st.str.-formula of the form

∃ξ1 . . . ξm

[
σ(ζ, ξ) ∧∧

m∧∧
i=1

ξi = {si(z) ≥ 0}

]
(♥)

where

(i) ξ1, . . . , ξm are space variables,

(ii) σ(ζ, ξ) is a space formula, and

(iii) s1(z), . . . , sm(z) are L gr-terms.

Moreover, if φ(z, ζ) is an existential formula, then the resulting equivalent formula in

(♥) is also existential.

Proof. The set of sorts Σ = {Sspace} is closed in L st.str. (Definition 2.1.3); moreover,

if s(z) is an L st.str.
↾Π -term, then the atomic L st.str.

↾Π -formulas s(z) ≥ 0 and s(z) = 0

are equivalent modulo T st.str. to {s(z) ≥ 0} = ⊤ and {s(z) = 0} = ⊤, respectively.

Therefore, by Lemma 2.1.8, φ(z, ζ) is equivalent to a formula φ′(z, ζ) of the form (♥)

which satisfies items (i) and (ii) in the statement of the lemma, but where each of the

terms si(z) are L ℓ-gp-terms.

In order to obtain from φ′(z, ζ) a formula of the form (♥) satisfying all items (i) -

(iii) in the statement of the lemma, assume first for notational simplicity and without
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loss of generality that m = 1 in the conjunct appearing in φ′(z, ζ), so that φ′(z, ζ) is

the formula

∃ξ

[
σ(ζ, ξ) ∧∧ ξ = {s(z) ≥ 0}

]
, (2.6)

where ξ and σ(ζ, ξ) are as in items (i) and (ii) in the statement of the lemma (re-

spectively), and s(z) is an L ℓ-gr-term. By Corollary 2.4.12, there exist m1,m2 ∈ N

and L gr-terms sij(z) such that s(z) is equivalent to
∨m1

i=1

∧m2

j=1 sij(z) modulo T st.str.;

in particular, (2.6) is equivalent to

∃ξ

[
σ(ζ, ξ) ∧∧ ξ =

m1⊔
i=1

m2l

j=1

{sij(z) ≥ 0}

]
, (2.7)

modulo T st.str. by Remark 2.4.14. Let ξij be new space variables for each i ∈ [m1] and

j ∈ [m2]; then (2.7) is equivalent to

∃ξ∃ξij

[
σ(ζ, ξ) ∧∧ ξ =

m1⊔
i=1

m2l

j=1

ξij ∧∧
m1∧∧
i=1

m2∧∧
j=1

ξij = {sij(z) ≥ 0}

]
, (2.8)

and clearly (2.8) is a formula of the form (♥) satisfying all items (i) - (iii) in the

statement of the lemma, as required. The moreover part in the statement of the

lemma is clear by construction.

Lemma 2.4.18. Consider the L st.str-formula

∃x

(∧∧
i∈I1

ψi(x,z,ξ1i)︷ ︸︸ ︷
ξ1i ⊑ {x ≥ s1i(z)} ∧∧

∧∧
i∈I2

ψi(x,z,ξ2i)︷ ︸︸ ︷
{x ≤ s2i(z)} ⊑ ξ2i ∧∧

∧∧
i∈I3

ξ3i ⊑ {x ≤ s3i(z)}︸ ︷︷ ︸
ψi(x,z,ξ3i)

∧∧
∧∧
i∈I4

{x ≥ s4i(z)} ⊑ ξ4i︸ ︷︷ ︸
ψi(x,z,ξ4i)

)
, (♣)

where

(i) x is a home variable;

(ii) I1, I2, I3, and I4 are disjoint finite index sets;

(iii) all ξki are space variables; and

(iv) all ski(z) are L gr-terms.

Then (♣) is equivalent modulo T st.str to the conjunction of all the following formulas:
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(a) For all i ∈ I1 and all j ∈ I3 the formula

∃x (ξ1i ⊑ {x ≥ s1i(z)} ∧∧ ξ3j ⊑ {x ≤ s3j(z)}) .

(b) For all i ∈ I2 and all j ∈ I3 the formula

∃x ({x ≤ s2i(z)} ⊑ ξ2i ∧∧ ξ3j ⊑ {x ≤ s3j(z)}) .

(c) For all i ∈ I1 and all j ∈ I4 the formula

∃x (ξ1i ⊑ {x ≥ s1i(z)} ∧∧ {x ≥ s4j(z)} ⊑ ξ4j) .

(d) For all i ∈ I2 and all j ∈ I4 the formula

∃x ({x ≤ s2i(z)} ⊑ ξ2i ∧∧ {x ≥ s4j(z)} ⊑ ξ4j) .

Moreover, suppose that G is an ℓ-group of functions X −→ N and let G := (G,LG,X) is

its corresponding standard stricture. If hij ∈ G (i ∈ I1∪̇I2, j ∈ I3∪̇I4) witness each of

the existential quantifiers of the formulas (i) - (iv) for G , then h :=
∨
i∈I1∪̇I2

∧
i∈I3∪̇I4 hij

witnesses the existential quantifier of the formula (♣) for G .

Proof. Note first that (♣) is the formula

∃x

∧∧
k∈[4]

∧∧
i∈Ik

ψi(x, z, ξki)

 (2.9)

where each ψi is defined as in the statement of the lemma. Let now G be an arbitrary

ℓ-group of functions X −→ N (where X is a non-empty set and N is an o-group)

and set G := (G,LG,X) be its corresponding standard structure. Pick d ∈ G|z| and

Cki ∈ LG,X for all for all k ∈ [4] and i ∈ Ik; for each k ∈ [4] and i ∈ Ik, define φi(x) to

be the formula (with parameters) ψi(x, d, Cki), and set eki := ski(d) ∈ G for all k ∈ [4]

and all i ∈ Ik.

Claim 1. The following are equivalent:

(I) G |= ∃x
(∧∧

k∈[4]
∧∧

i∈Ik φi(x)
)
.

(II) G |=
∧∧

i∈I1∪̇I2 ∃xi
(
φi(xi) ∧∧

∧∧
j∈I3∪̇I4 φj(xi)

)
.
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Proof of Claim 1. Clearly (I) implies (II). Conversely, suppose that (II) holds, let

hi ∈ G (i ∈ I1∪̇I2) witness this, and define h :=
∨
i∈I1∪̇I2 hi. If i ∈ I1, then

{h ≥ e1i} =

 ∨
i′∈I1∪̇I2

hi′ ≥ e1i

 (1)
=

⋃
i′∈I1∪̇I2

{hi′ ≥ e1i}
(2)

⊇ C1i,

where (1) follows from Remark 2.4.14, and (2) follows from (II), therefore G |= φi(h);

similarly, if i ∈ I2, then

{h ≤ e2i} =

 ∨
i′∈I1∪̇I2

hi′ ≤ e2i

 =
⋂

i′∈I1∪̇I2

{hi′ ≤ e2i} ⊆ C2i

therefore G |= φi(h). Analogously, if j ∈ I3, then

{h ≤ e3j} =

 ∨
i∈I1∪̇I2

hi ≤ e3j

 =
⋂

i∈I1∪̇I2

{hi ≤ e3j} ⊇ C3j,

hence G |= φj(h), and if j ∈ I4, then

{h ≥ e4j} =

 ∨
i∈I1∪̇I2

hi ≥ e4j

 =
⋃

i∈I1∪̇I2

{hi ≥ e4j} ⊆ C4j

hence G |= φj(h); altogether, G |= φi(h) for all i ∈ I1∪̇I2∪̇I3∪̇I4, from which (I)

follows. □Claim 1

Claim 2. The following are equivalent:

(I) G |=
∧∧

i∈I1∪̇I2 ∃xi
(
φi(xi) ∧∧

∧∧
j∈I3∪̇I4 φj(xi)

)
.

(II) G |=
∧∧

i∈I1∪̇I2
∧∧

j∈I3∪̇I4 ∃xij
(
φi(xij) ∧∧ φj(xij)

)
.

Proof of Claim 2. Clearly (I) implies (II). Conversely, suppose that (II) holds, let

hij ∈ G (i ∈ I1∪̇I2, j ∈ I3∪̇I4) witness this, and define hi :=
∧
j∈I3∪̇I4 hij. Fix

i ∈ I1∪̇I2; if j ∈ I3, then

{hi ≤ e3j} =

 ∧
j′∈I3∪̇I4

hij′ ≤ e3j

 =
⋃

j′∈I3∪̇I4

{hij′ ≤ e3j} ⊇ C3j,

therefore G |= φj(hi), and if j ∈ I4, then

{hi ≥ e4j} =

 ∧
j′∈I3∪̇I4

hij′ ≥ e4j

 =
⋂

j′∈I3∪̇I4

{hij′ ≥ e4j} ⊆ C4j,
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therefore G |= φj(hi). Analogously, if i ∈ I1, then

{hi ≥ e1i} =

 ∧
j∈I3∪̇I4

hij ≥ e1i

 =
⋂

j∈I3∪̇I4

{hij ≥ e1i} ⊇ C1i,

hence G |= φi(hi), and if i ∈ I2, then

{hi ≤ e2i} =

 ∧
j∈I3∪̇I4

hj ≤ e2i

 =
⋃

j∈I3∪̇I4

{hj ≤ e2i} ⊆ C2i,

hence G |= φi(hi); altogether G |= φj(hi) for all j ∈ I3∪̇I4 and all i ∈ I1∪̇I2, and

G |= φi(hi) for all i ∈ I1∪̇I2, therefore (I) follows. □Claim 2

The statement in the lemma now follows by combining Claim 1 and Claim 2.

Definition 2.4.19. An ℓ-group G of functions X −→ N (X a set and N an o-group)

is closed under patching if for all f, g ∈ G and all C,D ∈ LG,X

f↾C∩D = g↾C∩D =⇒ ∃h ∈ G such that f↾C = h↾C and g↾D = h↾D.

Remark 2.4.20. Let G be an ℓ-group of functions X −→ N (X a set and N an o-

group), and set G := (G,LG,X) be its corresponding standard structure. Then G is

closed under patching if and only if

G |= ∀xy∀ξζ(ξ ⊓ ζ ⊑ {x = y} → ∃z(ξ ⊑ {x = z} ∧∧ ζ ⊑ {y = z})),

therefore being closed under patching is an elementary property of standard structures.

Example 2.4.21. Let N be an o-minimal expansion of a real closed field and let G be

the ℓ-group of continuous definable functions X −→ N on some definable X ⊆ Nm.

It is claimed that G is closed under patching. Let f, g ∈ G and C,D ∈ LG,X be such

that f↾C∩D = g↾C∩D; then the function h0 : C ∪D −→ N given by

h0(x) :=

f(x) if x ∈ C

g(x) if x ∈ D

is continuous and definable, therefore by the definable Tietze extension theorem (see

Corollary [Dri98, Chapter 8, Section 3, Corollary 3.10]) there exists h ∈ G extending

h0, and such h verifies the patching condition for G. The same argument shows that

the ℓ-group of continuous functions X −→ R on a normal space X is closed under

patching, see [Wil70, pp. 103, 15.8].
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What follows next is a relatively simple example of an ℓ-group represented as an

ℓ-group of functions on a subset of its ℓ-spectrum of which is not closed under patching.

Example 2.4.22. Let N be a divisible o-group with at least one proper non-trivial

convex subgroup p (for example, N could be the additive group of a non-trivial real

closed valuation ring and p could be its maximal ideal), and let π : N −↠ N/p be the

projection map. Define G to be the fibre product of N with itself along π, that is,

G := N ×N/p N = {(a, b) ∈ N ×N | π(a) = π(b)}.

G is an ℓ-subgroup of N ×N , and the kernels of the projections of G onto each of its

coordinates yield q1, q2 ∈ ℓ-Spec(G) such that G/q1 ∼= G/q2 ∼= N ; it is claimed that G,

regarded as an ℓ-group of functions {q1, q2} −→ N is not closed under patching. Note

that the lattice of zero sets of G is exactly P({q1, q2}), where each of the elements

of P({q1, q2}) can be realized as the zero sets of the elements (0, 0), (ε, ε), (0, ε),

(ε, 0) ∈ G, where ε ∈ p \ {0}. Pick now any a ∈ N \ p and ε ∈ p \ {0} and set C

to be the zero set of (ε, 0), D to be the zero set of (0, ε), f := (a, a), and g := (ε, ε).

Then C ∩ D = ∅, hence f↾C∩D = g↾C∩D, but there is no h ∈ G such that f↾C = h↾C

and g↾D = h↾D, since the only function {q1, q2} −→ N satisfying these conditions is

h := (ε, a) and clearly h /∈ G.

Recall from Corollary 2.4.7 that every ℓ-group admits a representation as an ℓ-

group of functions on various subsets X ⊆ ℓ-Spec(G). Example 2.4.22 shows that for

some choices of X, the functional representation of G on X does not yield an ℓ-group

of functions which is closed under patching; the next lemma shows that one obtains

the patching condition for the choice X := ℓ-Spec∗(G):

Proposition 2.4.23 (Tressl, [Tre22]). Let G be any ℓ-group. Then G, regarded as

an ℓ-group of functions ℓ-Spec∗(G) −→ N for some o-group N (see Remark 2.4.7) is

closed under patching; equivalently, the standard structure (G,K(ℓ-Spec∗(G))) is closed

under patching (see Remark 2.4.16).

Proof. Let f, g ∈ G and C,D ∈ K(ℓ-Spec∗(G)) be such that f↾C∩D = g↾C∩D. Pick

h1, h2 ∈ G≥0 such that C = V (h1) and D = V (h2); then V (h1) ∩ V (h2) ⊆ V (f − g),

and thus ℓ(f−g) ⊆ ℓ(h1)+ℓ(h2) by Theorem 2.4.9 (IV). Pick e1 ∈ ℓ(h1) and e2 ∈ ℓ(h2)

such that f−g = e1+e2, and define h := f−e1 = g+e2; then C = V (h1) ⊆ V (e1) and
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D = V (h2) ⊆ V (e2) again by Theorem 2.4.9 (IV), and thus C ⊆ V (e1) = V (f − h)

and D ⊆ V (e2) = V (g − h), that is, f↾C = h↾C and g↾D = h↾D, as required.

Remark 2.4.24. LetG be any ℓ-group regarded as an ℓ-group of functions on ℓ-Spec∗(G)

as done in Proposition 2.4.23. Then it is straightforward to check that the following

are equivalent:

(i) The standard structure (G,K(ℓ-Spec∗(G))) is closed under patching.

(ii) The Chinese remainder theorem for principal ℓ-ideals of G holds, that is, for

all f, g, h1, h2 ∈ G, if f/(ℓ(h1) + ℓ(h2)) = g/(ℓ(h1) + ℓ(h2)), then there exists

h ∈ G such that f/ℓ(h1) = h/ℓ(h1) and g/ℓ(h2) = h/ℓ(h2) (cf. [BKW77, Lemme

10.6.3]).

(iii) The presheaf FG of ℓ-groups on (ℓ-Spec(G))inv defined on
◦
K((ℓ-Spec(G))inv) by

FG(V (f)) := G/ℓ(f) and FG(∅) := G/G = 0 is a sheaf (cf. [Sch13, Theorem

3.1]).

Proposition 2.4.25. Let G be an ℓ-group of functions X −→ N which is closed

under patching. Let G := (G,LG,X) be its corresponding standard structure, and let

also f, g ∈ G and C,D ∈ LG,X .

(I) The following are equivalent:

(i) G |= ∃x (C ⊑ {x ≥ f} ∧∧ D ⊑ {x ≤ g}).

(ii) G |= C ⊓D ⊑ {f ≤ g}.

(II) The following are equivalent:

(i) G |= ∃x ({x ≤ f} ⊑ C ∧∧ D ⊑ {x ≤ g}).

(ii) G |= D ⊓ {g ≤ f} ⊑ C ∧∧ ∃ξ(ξ ⊔ C = ⊤ ∧∧ ξ ⊓D ⊑ {f ≤ g}).

(III) The following are equivalent:

(i) G |= ∃x (C ⊑ {x ≥ f} ∧∧ {x ≥ g} ⊑ D).

(ii) G |= C ⊓ {g ≤ f} ⊑ D ∧∧ ∃ζ(ζ ⊔D = ⊤ ∧∧ C ⊓ ζ ⊑ {f ≤ g}).

(IV) Suppose further that G is divisible. The following are equivalent:
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(i) G |= ∃x ({x ≤ f} ⊑ C ∧∧ {x ≥ g} ⊑ D).

(ii) G |= ∃ξζ(ξ ⊔ C = ζ ⊔ D = ⊤ ∧∧ ξ ⊓ {g ≤ f} ⊑ D ∧∧ ζ ⊓ {g ≤ f} ⊑

C ∧∧ ξ ⊓ ζ ⊑ {f ≤ g}).

Proof. For each of the proofs of the items (I) - (IV) below, let h ∈ G witness the

existential home quantifier ∃x of the formula in corresponding subitem (i).

(I). (i) ⇒ (ii). C ∩D ⊆ {h ≥ f} ∩ {h ≤ g} ⊆ {f ≤ g}.

(ii) ⇒ (i). C ∩ D ⊆ {f ≤ g} = {f ∨ g = g}, therefore since G is closed under

patching there exists h ∈ G such that C ⊆ {f ∨ g = h} ⊆ {h ≥ f} and D ⊆ {g =

h} ⊆ {h ≤ g}.

(II). (i) ⇒ (ii). D ∩ {g ≤ f} ⊆ {h ≤ g} ∩ {g ≤ f} ⊆ {h ≤ f} ⊆ C. Define

C ′ := {h ≥ f}; then X = {h ≥ f} ∪ {h ≤ f} ⊆ C ′ ∪ C, hence X = C ′ ∪ C, and also

C ′ ∩D ⊆ {f ≤ h} ∩ {h ≤ g} ⊆ {f ≤ g}, therefore C ′ ∈ LG,X witnesses the existential

space quantifier ∃ξ in the formula of item (ii).

(ii) ⇒ (i). Let C ′ ∈ LG,X witness the existential space quantifier ∃ξ in the formula

of item (ii). Pick g0 ∈ G such that g0 ≥ 0 andD = {g0 = 0} and define f ′ := (f∨g)+g0.

Then

C ′ ∩D ⊆ {f ≤ g} ∩ {g0 = 0} ⊆ {f ′ = g} ⊆ {f ′ ≤ g},

therefore by (I) there exists h ∈ G such that C ′ ⊆ {h ≥ f ′} and D ⊆ {h ≤ g}. It

remains to show that {h ≤ f} ⊆ C; note that

{h ≤ f} (∗)
= {h ≤ f} ∩ (C ′ ∪ C) ⊆ ({h ≤ f} ∩ C ′) ∪ C,

where (∗) follows since C ′∪C = X, therefore it suffices to show that {h ≤ f}∩C ′ ⊆ C.

Indeed:

{h ≤ f} ∩ C ′ ⊆ {h ≤ f} ∩ {h ≥ f ′} ⊆ {f ′ ≤ f} ⊆ {g0 = 0} ∩ {g ≤ f}

= D ∩ {g ≤ f} ⊆ C.

(III). This follows from (II) by considering ∃x ({x ≤ −g} ⊑ D ∧∧ C ⊑ {x ≤ −f}).

(IV). (i) ⇒ (ii). Following similar arguments to the ones in the proof of (II), one

can easily check that C ′ := {h ≥ f} and D′ := {h ≤ g} witness the space quantifiers

∃ξ and ∃ζ in the formula of item (ii), respectively.
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(ii) ⇒ (i). Let C ′ := {h ≥ f} and D′ := {h ≤ g} witness the space quantifiers ∃ξ

and ∃ζ in the formula of item (ii), respectively. Pick g0 ∈ G such that C ′∩D′ = {g0 =

0}, and define f ′ := (f ∨ f+g
2
) + g0 and g′ := (g ∧ f+g

2
)− g0. Then

C ∩D ⊆ {f ≤ g} ∩ {g0 = 0} ⊆ {f ′ = g0} ∩ {g′ = g0} ⊆ {f ′ = g′} ⊆ {f ′ ≤ g′},

therefore since G is closed under patching there exists h ∈ G such that C ⊆ {f ′ = h}

and D ⊆ {g′ = h}. Note that

{h ≤ f} = {h ≤ f} ∩ (C ′ ∪ C) ⊆ ({h ≤ f} ∩ C ′) ∪ C

and

{h ≥ g} = {h ≥ g} ∩ (D′ ∪D) ⊆ ({h ≥ g} ∩D′) ∪D,

therefore to show that {h ≤ f} ⊆ C and {h ≥ g} ⊆ D it suffices to show that

{h ≤ f} ∩ C ′ ⊆ C and {h ≥ g} ∩D′ ⊆ D, respectively. Indeed,

{h ≤ f} ∩ C ′ ⊆ {f ′ ≤ f} ∩ {g0 = 0}

⊆ {g ≤ f} ∩ {g0 = 0}

⊆ {g ≤ f} ∩ C ′ ∩D′

⊆ C

and

{h ≥ f} ∩D′ ⊆ {g′ ≥ g} ∩ {g0 = 0}

⊆ {f ≥ g} ∩ {g0 = 0}

⊆ {f ≥ g} ∩ C ′ ∩D′

⊆ D,

as required.

Definition 2.4.26. Define T st.str
div+str to be the theory T st.str together with the set of

L st.str-sentences expressing that the group is divisible and that the standard structure

is closed under patching (see Remark 2.4.20).

Corollary 2.4.27. Every L st.str-formula of the form (♣) is equivalent modulo the

theory T st.str
div+patch to an existential formula without home quantifiers.
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Proof. Combine Lemma 2.4.18 together with Proposition 2.4.25.

Remark 2.4.28. Since the two-sorted language L st.str is finite, it is a recursive language,

see Definition 2.1.10, Remark 2.1.11, and the discussion at the end of Subsection 2.1.2.

In particular, it follows from their respective proofs that each of the equivalences

stated in Lemma 2.4.17 and Lemma 2.4.18 are effective modulo T st.str in the sense of

Definition 2.1.14; similarly, each of the equivalences stated in Proposition 2.4.25 are

effective modulo T st.str
div+str, and analogously for Corollary 2.4.27.

Theorem 2.4.29 (Shen-Weispfenning theorem, [SW87a]). Every L st.str-formula

φ(z, ζ) is effectively equivalent modulo the L st.str-theory T st.str
div+patch of divisible standard

structures which are closed under patching to a formula of the form (♥). In particular:

(i) The L st.str-theory T st.str
div+patch has effective elimination of home quantifiers.

(ii) The L st.str-theory T st.str
div+patch eliminates quantifiers relative to the space sort.

(iii) Every existential L st.str-formula is effectively equivalent modulo T st.str
div+patch to an

existential formula without home quantifiers.

Proof. It suffices to show that (i) holds. Indeed, since the set of sorts Σ = {Sspace} is

closed in L st.str (see Definition 2.1.3), (i) implies (ii) by Lemma 2.1.7, and if (i) holds,

then the first statement of the theorem follows from Lemma 2.4.17 and Remark 2.4.28;

item (iii) will follow immediately from the constructions in the proof of (i).

To prove (i), it suffices in turn to prove by induction on n ∈ N0 that every L st.str.-

formula with n home quantifiers is effectively equivalent modulo T st.str.
div+patch to a formula

without home quantifiers. In what follows, every occurrence of “equivalent” means

“effectively equivalent modulo T st.str
div+patch”; see also Remark 2.4.28.

The base case is clear, so assume that the statement holds for some n ∈ N0 and let

φ(z, ζ) be an L st.str-formula with n+1 home quantifiers. Since φ(z, ζ) is equivalent to

a formula in prenex normal form, it can be assumed that φ(z, ζ) is already in prenex

normal form; in particular, φ(z, ζ) is a formula of the form

∗ ∗ ∗ Qx ψ0︸ ︷︷ ︸
ψ

,

where ∗ ∗ ∗ denotes a (possibly empty) block of space quantifiers, the home quantifier

Q is either ∃ or ∀, and ψ is an L st.str-formula with exactly n home quantifiers whose
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free space variables contain ζ and whose free home variables are exactly z and x. It

now suffices to show that ψ is equivalent to a formula without home quantifiers. By

inductive hypothesis, ψ0 is equivalent to a formula without home quantifiers, therefore

by Lemma 2.4.17 ψ is equivalent to

Qx

[
∃ξ1 . . . ξm

(
σ ∧∧

m∧∧
i=1

ξi = {si(z, x) ≥ 0}

)]
, (2.10)

where

(i) ξ1, . . . , ξm are space variables,

(ii) σ is a space formula whose free variables are ξ1, . . . , ξm together with the free

space variables of ψ, and

(iii) s1(z, x), . . . , sm(z, x) are L gr-terms.

Case 1: Q = ∃. Since σ is a space formula, there is no occurrence of x in σ, therefore

(2.10) is equivalent to

∃ξ1 . . . ξm

σ ∧∧ ∃x
m∧∧
i=1

ξi = {si(z, x) ≥ 0}︸ ︷︷ ︸
δ(z,ξ)

 ,

and it suffices to show that δ(z, ξ) is equivalent to a formula without home quantifiers.

Since each si(z, x) is an L gr-term, si(z, x) = ti(z)± nix for some L gr-term ti(z) and

some ni ∈ N, it follows that there exists a unique m1 ∈ N0 with m1 ≤ m such that

δ(z, ξ) is equivalent to

∃x
m1∧∧
i=1

ξi = {nix ≥ ti(z)} ∧∧
m∧∧

i=m1+1

ξi = {nix ≤ ti(z)}. (2.11)

Since {u1 ≥ u2} = {nu1 ≥ nu2} in T st.str for all home terms u1, u2 and all n ∈ N, it

follows that (2.11) is equivalent to

∃x
m1∧∧
i=1

ξi = {nx ≥ t′i(z)} ∧∧
m∧∧

i=m1+1

ξi = {nx ≤ t′i(z)}, (2.12)

where n is the least common multiple of n1, . . . , nm, and t
′
i(z) := (n/ni) · ti(z). Since

the home sort is a divisible group in every model of T st.str
div+patch, (2.12) is equivalent to

∃x
m1∧∧
i=1

ξi = {x ≥ t′i(z)} ∧∧
m∧∧

i=m1+1

ξi = {x ≤ t′i(z)}, (2.13)
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and (2.13) is in turn equivalent to

∃x

(
m1∧∧
i=1

ξi ⊑ {x ≥ t′i(z)} ∧∧
m∧∧

i=m1+1

{x ≤ t′i(z)} ⊑ ξi

m∧∧
i=m1+1

ξi ⊑ {x ≤ t′i(z)} ∧∧
m1∧∧
i=1

{x ≥ t′i(z)} ⊑ ξi

)
. (2.14)

Finally, (2.14) is a formula of the form (♣), therefore it is equivalent to an existential

formula without home quantifiers by Corollary 2.4.27.

Case 2: Q = ∀. In this case (2.10) is equivalent to

¬ ∃x ¬

[
∃ξ1 . . . ξm

(
σ ∧∧

m∧∧
i=1

ξi = {si(z, x) ≥ 0}

)]
︸ ︷︷ ︸

ψ′

. (2.15)

Since ψ′ is a formula without home quantifiers, one can proceed as in Case 1 above to

eliminate the home quantifier ∃xψ′, form which it follows that (2.15) is equivalent to

a formula without home quantifiers.

The remaining part of this subsection collects some direct consequences of Theo-

rem 2.4.29 on decidability issues; note that Theorem 2.4.29 can also be used to give

sufficient conditions for an embedding of standard structures to be existential and

elementary.

Corollary 2.4.30. Let G be a divisible ℓ-group of functions X −→ N which is closed

under patching. Let G := (G,LG,X) be its corresponding standard structure. If the

L lat(⊤)-theory of the lattice of zero sets LG,X of G is decidable, then the L st.str-theory

of G is decidable, and thus so is the L ℓ-gp-theory of G.

Proof. Let φ be an L st.str-sentence. Since φ does not have any free variables, it follows

by Theorem 2.4.29 that φ is effectively equivalent modulo G to an L lat(⊤)-sentence

σ, therefore G |= φ if and only if LG,X |= σ, from which the statement follows.

Corollary 2.4.31. Let G be any divisible ℓ-group. If the L lat(⊤)-theory of the lattice

K(ℓ-Spec∗(G)) is decidable, then the L ℓ-gp-theory of G is decidable.

Proof. Combine Lemma 2.4.16, Proposition 2.4.23, and Corollary 2.4.30.

The next proposition gives a particular instance in which the lattice of zero sets of

an ℓ-group of functions is decidable; this result will be deployed again in Chapter 3.
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Proposition 2.4.32. Let N be an o-minimal expansion of a divisible o-group.

(i) Let LN be the lattice of zero sets of the ℓ-group of continuous definable functions

N −→ N . The L lat(S)-theory of (LN , S) is decidable for every finite set S ⊆ LN

of constants.

(ii) Let X ⊆ Nm be definable and of o-minimal dimension 1. The lattice LX of zero

sets of the ℓ-group of continuous definable functions X −→ N is isomorphic to

a lattice which is parametrically definable in the lattice LN . In particular, the

L lat(S)-theory of (LX , S) is decidable for every finite set S ⊆ LX of constants.

Proof. A proof analogous to that of Lemma 2.3.34 shows that LR and LX are exactly

the lattices of closed and parametrically definable subsets of R and X, respectively.

In particular, LR is the lattice of finite unions of intervals [a, b] ⊆ R ∪ {±∞}, where

a, b ∈ R ∪ {±∞} and a < b. Item (i) now follows by [Tre17, Corollary 3.6], and item

(ii) follows by [Tre16, 4.1. (vii), items (a) and (c)].

Corollary 2.4.33. Let N be an o-minimal expansion of a real closed field and let

X ⊆ Nm be a definable and of o-minimal dimension 1. The L ℓ-gp-theory of the ℓ-

group of continuous definable functions X −→ N is decidable.

Proof. Combine Example 2.4.21, Proposition 2.4.32, and Corollary 2.4.30.

Proposition 2.4.34. Let A be a real closed ring and regard it as an f -ring of functions

Spec(A) −→ R for some real closed field R (see Lemma 2.3.3). Then the additive ℓ-

group reduct of A is closed under patching.

Proof. Note first that an element V ⊆ Spec(A) is a zero set of A ⊆ RSpec(A) if and

only if there exists f ∈ A such that V = {f = 0} = {p ∈ Spec(A) | f/p = 0} = {p ∈

Spec(A) | f ∈ p} = V (f). By Proposition 2.3.4 it follows that the lattice LA,Spec(A)

of zero sets of A is exactly K(Spec(A)). The proof of the statement is now analogous

to the proof of Proposition 2.4.23 using Proposition 2.3.4 instead of Theorem 2.4.9

(IV).

Corollary 2.4.35. Let A be a real closed ring. If the L lat(⊤)-theory of K(Spec(A))

is decidable, then the L ℓ-gp-theory of the additive ℓ-group reduct of A is decidable.
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Proof. By [Sch89, Chapter I, Corollary 3.6], every real closed ring is an Ralg-algebra,

where Ralg is the field of real algebraic numbers. In particular, the additive ℓ-group

reduct ofA is a divisible abelian ℓ-group, therefore the statement follows by Proposition

2.4.34 and Corollary 2.4.30.



Chapter 3

The Lattice-Ordered Module

Cs.a.(X)

Fix the following conventions and notation for this chapter:

(i) Every module is a left module.

(ii) R is a real closed field and X ⊆ Rm is a semi-algebraic curve (Definition 2.3.19).

(iii) Cs.a.(X) := {f : X −→ R | f is continuous and semi-algebraic}.

3.1 Introduction

The set Cs.a.(X) of continuous semi-algebraic functions on a semi-algebraic curve X

has the structure of a ring under pointwise addition and multiplication of functions.

The ring Cs.a.(X) is real closed (Definition 2.3.1) and its underlying additive group

is a divisible ℓ-group (Definition 2.4.1). The semi-algebraic Tietze extension theorem

(Theorem 2.3.17) implies that Cs.a.(X) is closed under patching (Definition 2.4.19 and

Example 2.4.21), therefore the first-order properties of Cs.a.(X) regarded as an ℓ-group

can be effectively reduced to first-order properties of its lattice of zero sets LX by the

Shen-Weispfenning theorem (Subsection 2.4.3). In particular, decidability of the first-

order theory of the lattice LX (Proposition 2.4.32 (ii)) implies that the first-order

theory of the ℓ-group Cs.a.(X) is decidable (Corollary 2.4.33).

The goal of this chapter is to adapt the proof technique of the Shen-Weispfenning

theorem to show that the first-order properties of Cs.a.(X), regarded this time as a

76
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lattice-ordered module over itself in the language of ℓ-groups enriched by all scalar

multiplication functions f · (−) for f ∈ Cs.a.(X), can be reduced to a Boolean combi-

nation of first-order properties of its lattice of zero sets LX and first-order properties

of the ring of germs OR of continuous semi-algebraic functions X −→ R at a half-

branch of X (Subsection 2.3.2). See Theorem 3.1.8 for the precise formulation of this

statement. This reduction of first-order properties is effective under the additional hy-

pothesis that R is a recursive real closed field; this, together with the fact that LX and

OR are decidable structures, implies that the first-order theory of the lattice-ordered

module Cs.a.(X) is decidable, see Section 3.5. Some further remarks on decidability

can be found in Section 3.6, as well as a discussion on where the problems arise in

attempting to use the model-theoretic machinery of this chapter to analyze the ring

structure on Cs.a.(X) .

It will now be explained how the ring of germs OR arises naturally in trying to

adapt the Shen-Weispfenning theorem to the lattice-ordered module

MX := (Cs.a.(X); +,−, 0,≤,∨,∧, {f · (−)}f∈Cs.a.(X)).

Following the construction in Subsection 2.4.3, the first step to adapt the Shen-

Weispfenning theorem to MX is to enrich it with a new sort for the lattice of zero

sets LX of Cs.a.(X) and with the map MX −↠ LX given by f 7→ {f ≥ 0}.

In the resulting two-sorted structure (MX , LX) one can express the statement that

f ∈ Cs.a.(X) divides g ∈ Cs.a.(X) with the formula ∃y(g = f · y). An example in

which (MX , LX) ̸|= ∃y(g = f · y) will be now given in order to see how OR appears

with this set-up; the role of the lattice LX in this context will be clarified in the next

two paragraphs. Suppose that X := R. Let f ∈ Cs.a.(X) be the absolute value map

(so f(x) := |x| for all x ∈ X), and g ∈ Cs.a.(X) be the identity map (so g(x) := x

for all x ∈ X). Then (MX , LX) ̸|= ∃y(g = f · y) for this choice of X, f, and g, since

any function h : X −→ R satisfying g = f · h must also satisfy that h↾[−1,0] = −1

and h↾[0,1] = 1, and thus no such function can be continuous, hence in particular

h /∈ Cs.a.(X).

On the other hand, note that (MX , LX) |= ∃y([−1, 0] ⊑ {g = f · y}) and also

(MX , LX) |= ∃y([0, 1] ⊑ {g = f · y}) with the same choice of X, f and g as above; in

other words, f divides g on the curve intervals [−1, 0] and [0, 1] of the half-branches

0− and 0+ of 0 ∈ X, respectively (see Definition 2.3.29 (ii) for the definition of a
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curve interval of a half-branch). In particular, even though the divisibility problem

∃y(g = f · y) can be solved on each half-branch 0− and 0+ of 0 separately, that is,

OR |= ∃Y ([g]0− = [f ]0−Y ) and OR |= ∃Y ([g]0+ = [f ]0+Y ) (where [−]0± : Cs.a.(X) −↠

OR is the germ map at 0±, see Proposition 2.3.35), these solutions cannot be glued

together to a solution locally around the point 0 ∈ X.

The example above is an instantiation of the following result which holds for any

semi-algebraic curve X and any f, g ∈ Cs.a.(X) (a slightly stronger version of this next

statement is proved in Lemma 3.3.1): there exists h ∈ Cs.a.(X) such that g = f · h if

and only if {f = 0} ⊆ {g = 0} and f divides g locally around the boundary points

of {f = 0}. The statement that f divides g locally around the boundary points of

{f = 0} can be expressed as a first-order statement purely in the ring OR by referring

to the germs [f ]β and [g]β of f and g (respectively) at each of the half-branches β of

the finitely many boundary points of {f = 0} (the fact that there are finitely many

such points follows by o-minimality and from the fact that X is 1-dimensional), see

Lemma 3.3.2. In this way, the first-order statement ∃y(g = f · y) in MX is equivalent

to the statement {f = 0} ⊆ {g = 0} expressible in the lattice of zero sets LX together

with a first-order statement expressible in the ring of germs OR. This suggests to

enrich the two-sorted structure (MX , LX) with a sort for the ring of germs OR and

with the germ maps [−]β : Cs.a.(X) −↠ OR for all half-branches β at all points of X.

This is exactly what is described in the next subsection.

3.1.1 The set-up

Definition 3.1.1 (Page 128 in [Ste10]). Let A be a poring. A lattice-ordered A-module

(ℓ-A-module for short) is an ℓ-group (M,+,−, 0,≤) such that M is an A-module and

(f ≥ 0 and g ≥ 0) =⇒ f · g ≥ 0

for all f ∈ A and g ∈M . An f -A-module is an ℓ-A-module M such that

(g1 ∧ g1 = 0 and f ≥ 0) =⇒ (f · g1) ∧ g2 = 0 (3.1)

for all f ∈ A and all g1, g2 ∈M .

In particular, since Cs.a.(X) is a real closed ring, it is also an f -ring, therefore

Cs.a.(X) has the structure of an f -Cs.a.(X)-module, too.
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Definition 3.1.2. Let A be a ring. Define L A-mod := L gp ∪̇ {f · (−) | f ∈ A} to

be the language of A-modules and L ℓ-A-mod := L ℓ-gp ∪̇ {f · (−) | f ∈ A} to be the

language of ℓ-A-modules, where each f · (−) is a unary function symbol.

Definition 3.1.3. Let LX be the following 3-sorted language:

(i) Π ∪̇ Σ is a partition of the sorts of the language LX , where Π := {Shome} and

Σ := {Sspace, Sgerm}; Shome is the home sort, Sspace is the space sort, and Sgerm

is the germ sort. Home variables are denoted by x, y, . . . , space variables are

denoted by ξ, ζ, . . . , and germ variables are denoted by Y, Z, . . . .

(ii) LX↾Π = LX↾{Shome} := L ℓ-Cs.a.(X)-mod.

(iii) LX↾Σ := LX↾{Sspace} ∪̇ LX↾{Sgerm}, where

LX↾{Sspace} := L lat(⊤,⊥) and LX↾{Sgerm} := L ring(≤, m),

where ⊤ and ⊥ are two constant symbols, ≤ is a binary predicate, and m is a

unary predicate.

(iv) LX \ (LX↾Π ∪̇ LX↾Σ) := {{(−) ≥ 0}} ∪̇ {[(−)]β | β is a half-branch of X},

where {(−) ≥ 0} is a unary function symbol of sort (Shome, Sspace), and [(−)]β is

a unary function symbol of sort (Shome, Sgerm) for every half-branch β of X.

Definition 3.1.4. Let MX be the following LX-structure:

(i) Interpret the home sort by Cs.a.(X) regarded canonically as an LX↾Π-structure.

In particular, each unary function symbol f · (−) ∈ LX↾Π is interpreted as scalar

multiplication by f ∈ Cs.a.(X).

(ii) Interpret the space sort as the lattice LX of closed semi-algebraic subsets of

X and interpret the germ sort as the ring OR of germs of continuous semi-

algebraic functions at a half-branch, each regarded canonically as a structure

in the corresponding language. In particular, ⊤MX := X, ⊥MX := ∅, ≤ ∈

LX↾{Sgerm} is interpreted as the total order onOR, and mMX is the unique maximal

ideal m of OR.

(iii) Interpret the unary function symbol {(−) ≥ 0} as the map Cs.a.(X) −↠ LX

given by f 7−→ {f ≥ 0}, and for each half-branch β of X, interpret the unary

function symbol [(−)]β as the germ map Cs.a.(X) −↠ OR given by f 7−→ [f ]β.
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Here is a diagrammatic view of the 3-sorted structure MX :

(LX ,⊑,⊔,⊓,⊤,⊥)

(Cs.a.(X); +,−, 0,≤,∨,∧, {f · (−)}f∈Cs.a.(X))

(OR,+,−, ·, 0, 1,≤, m)

{(−) ≥ 0}

{[(−)]β | β a half-branch of X}

The statement for MX analogous to the Shen-Weispfenning theorem would be

that MX eliminates quantifiers relative to the space and germ sorts; equivalently (see

Lemma 2.1.7), that every LX-formula is equivalent modulo MX to an LX-formula

without home quantifiers. Unfortunately, this is not true as stated. The issue is that

in order to eliminate home quantifers in LX-formulas modulo MX one cannot avoid

using parameters for elements in the space and germs sorts as shown in Proposition

3.1.6 below, and these parameters are not part of the language LX . Therefore to

obtain the desired relative quantifier elimination result one must enrich the language

LX with constants for the elements in the lattice of zero sets LX and the elements in

the ring of germs OR, see Subsection 3.1.2.

Example 3.1.5. Let f ∈ Cs.a.(X). The zero set {f = 0} ∈ LX is definable in MX by

the formula ∃x(⊥ = {x ≤ 0} ∧∧ {f · x = 0} = ζ), and since ⊥ is ∅-definable in LX , it

follows that {f = 0} is ∅-definable in MX . Similarly, for every half-branch β of X,

the germ [f ]β ∈ OR is ∅-definable in MX by the formula ∃x([x]β = 1 ∧∧ [f · x]β = Z).

Proposition 3.1.6. There exist f, g ∈ Cs.a.(X) and a half-branch β of X such that

the formulas

∃x(⊥ = {x ≤ 0} ∧∧ {f · x = 0} = ζ) and ∃x([x]β = 1 ∧∧ [g · x]β = Z) (3.2)

are not equivalent modulo MX to LX-formulas without home quantifiers. In particular,

the 3-sorted structure MX does not eliminate quantifiers relative to the space and germ

sorts.

Proof. Assume for contradiction that every formula of the form (3.2) is equivalent

modulo MX to a formula without home quantifiers.
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Claim 1. Every formula of the form (3.2) is equivalent modulo MX to an LX↾Σ-

formula; in particular, the sets defined by formulas of the form (3.2) are ∅-definable

in the LX↾Σ-reduct MX↾Σ of MX .

Proof of Claim 1. Note first that the set of sorts Σ is closed in LX (see Definition 2.1.3).

Moreover, for any LX↾Π-term t(x), the atomic LX↾Σ-formulas t(x) ≥ 0 and t(x) = 0

are equivalent modulo MX to {t(x) ≥ 0} = ⊤ and {t(x) = 0} = ⊤, respectively. Since

formulas of the form (3.2) do not have free variables from the home sort, the claim

now follows by assumption and by Lemma 2.1.8. Claim 1

By Claim 1, every set defined by a formula of the form (3.2) is a ∅-definable set

in the LX↾Σ-structure MX↾Σ. Together with Example 3.1.5 this implies that every

element in the LX↾Σ-structure MX↾Σ is a ∅-definable constant, and this is not the

case; for completeness this will be shown explicitly. By [Mar02, Proposition 1.3.5]

it suffices to find f, g ∈ Cs.a.(X), a half-branch β of X, and an LX↾Σ-automorphism

α : MX↾Σ −→ MX↾Σ which does not fix {f ≥ 0} ∈ LX nor [g]β ∈ OR.

Pick any point a ∈ X and let β be a half-branch of X at a. Let C be a curve

interval of β (that is, a curve interval of X at a such that C ∈ β, see Definition 2.3.29),

and let σ : [0, 1]R −→ C be a semi-algebraic homeomorphism such that σ(0) = a. Set

also b := σ(1) and assume without loss of generality that C ∩ clX(X \C) = {a, b} (one

can always choose ε ∈ (0, 1) such that C ′∩clX(X \C ′) = {a, c}, where C ′ := σ([0, ε]R)

and c := σ(ε)). Let F : [0, 1]R −→ [0, 1]R be the semi-algebraic homeomorphism given

by x 7→ x2; then G := σ ◦F ◦σ−1 : C −→ C is a semi-algebraic homeomorphism whose

unique fixed points are a and b. In particular, the map H : X −→ X given by

H(x) :=

x if x ∈ clX(X \ C)

G(x) if x ∈ C

is a well-defined semi-algebraic bijection. Moreover, if D ⊆ X is closed, then

H(D) = H([D ∩ C] ∪ [D ∩ clX(X \ C)]) = H(D ∩ C) ∪H(D ∩ clX(X \ C))

= G(D ∩ C) ∪ [D ∩ clX(X \ C)]

is closed in X, and similarly H−1(D) is also closed, therefore H is a semi-algebraic

homeomorphism X −→ X.

Claim 2. Write LX := {{f ≥ 0} | f ∈ Cs.a.(X)} and OR := {[f ]β | f ∈ Cs.a.(X)}. The
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maps α1 : LX −→ LX and α2 : OR −→ OR given by

α1({f ≥ 0}) := {f ◦H ≥ 0} and α2([f ]β) := [f ◦H]β

are an L lat(⊤,⊥)-automorphism and a L ring(≤, m)-automorphism, respectively.

Proof of Claim 2. Let f, g ∈ Cs.a.(X). Then

{f ≥ 0} = {g ≥ 0} ⇐⇒ f−1(R≥0) = g−1(R≥0)

⇐⇒ H−1(f−1(R≥0)) = H−1(g−1(R≥0))

⇐⇒ (f ◦H)−1(R≥0) = (g ◦H)−1(R≥0)

⇐⇒ α1({f ≥ 0}) = α1({g ≥ 0},

therefore α1 is a well-defined injective map. Clearly α1 is also surjective and it preserves

the top and bottom elements of LX ; moreover

α1({f ≥ 0} ∪ {g ≥ 0}) = α1({f ∨ g ≥ 0}) = {(f ∨ g) ◦H ≥ 0}

= {(f ◦H) ∨ (g ◦H) ≥ 0}

= {(f ◦H) ≥ 0} ∪ {(g ◦H) ≥ 0}

= α1({f ≥ 0}) ∪ α1({g ≥ 0})

by Remark 2.4.14, and that α1 preserves binary meets follows analogously, therefore

α1 is a lattice isomorphism.

To prove that α2 is an L ring(≤, m)-automorphism it suffices to show that it is

a ring isomorphism, since the interpretations of ≤ and m in OR are L ring-definable

subsets. If [f ]β = [g]β, then there exists a curve interval D of β such that f↾D = g↾D

by Proposition 2.3.35 (iv), and since C is also a curve interval of β it may be assumed

that D ⊆ C. By construction of H, it follows that H−1(D) = G−1(D) is also a curve

interval of β, therefore D′ := H−1(D) is a curve interval of β such that (f ◦H)↾D′ =

f↾H(D′) = g↾H(D′) = (g ◦ H)↾D′ , therefore [f ◦ H]β = [g ◦ H]β by Proposition 2.3.35

(iv), showing thus that α2 is a well-defined map. A similar argument shows that α2 is

injective, and clearly α2 is a surjective ring homomorphism, therefore this concludes

the proof. Claim 2

By definition of LX↾Σ, the pair (α1, α2) is an automorphism of MX↾Σ. Pick c ∈

C \{a, b} and f ∈ Cs.a.(X) be such that f(c) = 0 and f(x) < 0 for all x ∈ X \{c}; then

H(c) = G(c) ̸= c by construction of G, hence {f ≥ 0} = {c} ≠ {H(c)} = {f ◦ H ≥
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0} = α1({f ≥ 0}) and thus α1 does not fix {f ≥ 0} ∈ LX . Now let g ∈ Cs.a.(X) be

such that g does not take the same value twice on C. Then [g]β ̸= [g◦H]β, as otherwise

there would exist a curve interval D of β such that D ⊆ C and g↾D = (g ◦H)↾D, hence

g(d) = g(H(d)) for some d ∈ D \ {a}, but H(d) = G(d) ∈ C and H(d) ̸= d by

construction of G, contradicting the choice of g, therefore α2 does not fix [g]β.

3.1.2 Statement of the main theorem and proof outline

As explained at the beginning of Section 3.1, a first suitable adaptation of the Shen-

Weispfenning machinery to the lattice-ordered module Cs.a.(X) could be potentially

carried for the three-sorted LX-structure MX given in Definitions 3.1.3 and 3.1.4. On

the other hand, Proposition 3.1.6 and its proof show that the desired relative quantifier

elimination statement for MX cannot be achieved unless the language LX is enriched

by constant symbols for elements in the space and germ sorts. The resulting canonical

expansion M const
X of MX to this enriched language L const

X eliminates quantifiers relative

to the space and germ sorts, and this is the main theorem of this chapter:

Definition 3.1.7. Let L const
X be the enrichment of the language LX consisting of

adding constant symbols for each element in the lattice of zero sets LX and for each el-

ement in the ring of germs OR. Space formulas with parameters are just {Sspace}-sorted

L const
X -formulas, in other words, space formulas in the language LX with parameters

from LX , and germs formulas with parameters are defined analogously. Define M const
X

to be the canonical expansion of MX to the language L const
X .

Theorem 3.1.8. Every L const
X -formula φ(z, ζ, Z) is equivalent modulo M const

X to an

L const
X -formula of the form

∃ξ1 . . . ξm∃Y1 . . . Yn

[
σ(ζ, Z, ξ, Y ) ∧∧

m∧∧
i=1

ξi = {ti(z) ≥ 0} ∧∧
n∧∧
i=1

Yj = [sj(z)]βj

]
(♠)

where

(i) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables,

(ii) σ(ζ, Z, ξ, Y ) is a Boolean combination of space formulas with parameters and

germ formulas with parameters,

(iii) t1(z), . . . , tm(z) and s1(z), . . . , sn(z) are L Cs.a.(X)-mod-terms, and
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(iv) β1, . . . , βn are half-branches of X.

In particular, every L const
X -formula φ(z, ζ, Z) is equivalent modulo M const

X to an L const
X -

formula without home quantifiers. Equivalently, M const
X eliminates quantifiers relative

to the space and the germ sorts.

The proof of 3.1.8 mimics the proof of the Shen-Weispfenning theorem using also

the formalism of Subsection 2.1.1, and it is developed in the following steps in Sections

3.2, 3.3, and 3.4:

(i) First it is shown in Lemma 3.2.6 that every L const
X -formula without home quan-

tifiers is equivalent modulo M const
X to a formula of the form (♠).

(ii) After that, it is shown in successive steps (Lemmas 3.2.7, 3.2.8, and 3.2.9) that in

order to eliminate home quantifiers in arbitrary L const
X -formulas modulo M const

X

it suffices to eliminate home quantifiers in formulas of the form (W2).

(iii) This is followed by the elimination steps, which consist in showing one can elim-

inate home quantifiers modulo M const
X in formulas of a particular form, namely

the formulas (⋆1) and (⋆2). This is all the content of Section 3.3

(iv) Section 3.4 ties everything together: step (i) above shows that it suffices to prove

that every L const
X -formula is equivalent modulo M const

X to a formula without home

quantifiers, step (ii) shows that it suffices in turn to eliminate home quantifiers

in formulas of the form (W2), and in Section 3.4 it is shown how to eliminate

home quantifiers in formulas of the form (W2) using the elimination results from

step (iii).

The need for the space and germ parameters is also manifested in the simplification

steps in item (ii); in particular, germ parameters arise naturally in the proof of Lemma

3.2.8, and space parameters arise naturally in the proof of Lemma 3.2.9.

The elimination of home quantifiers in formulas (⋆1) and in formulas (⋆2) are of

different flavours. Formulas of the form (⋆1) essentially deal with divisibility by fixed

scalars just as explained at the beginning of Section 3.1. The main idea to eliminate

home quantifiers in such formulas is to use the semi-algebraic Tietze extension theo-

rem to glue together local solutions provided by the ring of germs OR to divisibility
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problems on curve intervals of half-branches of X. On the other hand, L const
X -formulas

of the form (⋆2) can be regarded as analogues of the L st.str-formulas in Lemma 2.4.18

from the Shen-Weispfenning construction. The main idea to eliminate home quanti-

fiers in formulas of the form (⋆2) is to reduce it first to eliminating home quantifiers

in simpler formulas, and then use certain conditions expressible in the space and germ

sorts to show that eliminating home quantifiers in such simpler formulas essentially

boils down to an application of Lemma 2.4.18 and Proposition 2.4.25.

3.2 Simplification steps

Lemma 3.2.1. Let A be a poring andM be an f -A-module. Let f ∈ A and g1, g2 ∈M .

If f ≥ 0, then f · (g1 ∧ g2) = f · g1 ∧ f · g2 and f · (g1 ∨ g2) = f · g1 ∨ f · g2.

Proof. If h ∈M , then

g1 ∧ g2 = h ⇐⇒ (g1 ∧ g2)− h = 0 ⇐⇒ (g1 − h) ∧ (g2 − h) = 0; (3.3)

in particular,

[g1 − (g1 ∧ g2)] ∧ [g2 − (g1 ∧ g2)] = 0. (3.4)

Suppose that f ≥ 0; applying (3.1) twice to (3.4) it follows that

f · [g1 − (g1 ∧ g2)] ∧ f · [g2 − (g1 ∧ g2)] = 0,

therefore

[f · g1 − f · (g1 ∧ g2)] ∧ [f · g2 − f · (g1 ∧ g2)] = 0

and thus f · (g1 ∧ g2) = f · g1 ∧ f · g2 follows by the equivalence in (3.3). The identity

f · (g1 ∨ g2) = f · g1 ∨ f · g2 follows from f · (g1 ∧ g2) = f · g1 ∧ f · g2 together with

f · (g1 ∨ g2) = −[f · [(−g1) ∧ (−g2)]].

Proposition 3.2.2 (cf. Exercise 6 (g) in page 135 of [Ste10]). Let A be an ℓ-ring, M

be an f -A-module, and N ⊆ M be a sub-A-module. The sublattice of M generated by

N is a sub-A-module of M ; in particular, if S ⊆M is any non-empty subset, then the

sub-ℓ-A-module of M generated by S consists of the elements of M of the form

m∨
i=1

n∧
j=1

gij,

where each gij is in the sub-A-module of M generated by S.
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Proof. Let N ′ be the sublattice of M generated by N ; N ′ is a subgroup of M by

Weinberg’s theorem (Theorem 2.4.5), therefore it suffices to show that f · g ∈ N ′ for

all f ∈ A and g ∈ N ′. Write g =
∨m
i=1

∧n
j=1 gij with gij ∈ N for all i ∈ [m] and j ∈ [n];

then

f · g = (f+ − f−) ·

(
m∨
i=1

n∧
j=1

gij

)
since A is an ℓ-ring

= f+ ·

(
m∨
i=1

n∧
j=1

gij

)
− f− ·

(
m∨
i=1

n∧
j=1

gij

)
since M is an A-module

=

(
m∨
i=1

n∧
j=1

f+ · gij

)
−

(
m∨
i=1

n∧
j=1

f− · gij

)
by Lemma 3.2.1.

Since f+ · gij, f− · gij ∈ N for all i ∈ [m] and j ∈ [n], and N ′ is a subgroup of M ,

f · g ∈ N ′ follows, as required.

Remark 3.2.3. If A is an ℓ-ring, then every element in A≥0 is of the form f ∨ 0 for

some f ∈ A, therefore the class of ℓ-A-modules is elementary in the language L ℓ-A-mod.

Explicitly, an axiomatization for this class consists of the L ℓ-gp-axioms for ℓ-groups

together with the L A-mod-axioms for A-modules and the set of L ℓ-A-mod-sentences

{∀x[x ≥ 0 → (f ∨ 0) · x ≥ 0] | f ∈ A}. Similarly, the class of f -A-modules is also

elementary in the language L ℓ-A-mod.

Corollary 3.2.4. Let A be an ℓ-ring. Every L ℓ-A-mod-term t(x) is equivalent modulo

the L ℓ-A-mod-theory of f -A-modules to a term of the form
∨m
i=1

∧n
j=1 tij(x), where each

tij(x) is an L A-mod-term.

Proof. Immediate from Proposition 3.2.2.

Lemma 3.2.5. Every LX-formula φ(z, ζ, Z) without home quantifiers is equivalent

modulo MX to an LX-formula of the form

∃ξ1 . . . ξm∃Y1 . . . Yn

[
σ(ζ, Z, ξ, Y ) ∧∧

m∧∧
i=1

ξi = {ti(z) ≥ 0} ∧∧
n∧∧
i=1

Yj = [sj(z)]βj

]
(3.5)

where

(i) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables,

(ii) σ(ζ, Z, ξ, Y ) is a Boolean combination of space formulas and germ formulas,
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(iii) t1(z), . . . , tm(z) and s1(z), . . . , sn(z) are L Cs.a.(X)-mod-terms, and

(iv) β1, . . . , βn are half-branches of X.

Proof. The set of sorts Σ = {Sspace, Sgerm} is closed in LX (Definition 2.1.3); moreover,

if t(z) is an LX↾Π-term, then the atomic LX↾Π-formulas t(z) ≥ 0 and t(z) = 0 are

equivalent modulo MX to {t(z) ≥ 0} = ⊤ and {t(z) = 0} = ⊤, respectively. Since

LX↾Σ \ (LX↾{Sspace} ∪̇ LX↾{Sgerm}) = ∅, it follows from Lemma 2.1.6 (applied to, say,

the closed sort {Sgerm} in the language LX↾Σ) that LX↾Σ-formulas are Boolean com-

binations of LX↾{Sspace}-formulas and LX↾{Sgerm}-formulas, therefore, by Lemma 2.1.8,

φ(z, ζ, Z) is equivalent to a formula φ′(z, ζ, Z) of the form (3.5) which satisfies items

(i), (ii), and (iv) in the statement of the lemma, but where each of the terms ti(z) and

sj(z) are L ℓ-Cs.a.(X)-mod-terms.

In order to obtain from φ′(z, ζ, Z) a formula of the form (3.5) satisfying all items (i)

- (iv) in the statement of the lemma, assume for notational simplicity that m = n := 1

in the conjuncts appearing in φ′(z, ζ, Z) (the case for arbitrary m and n is treated

analogously), so that φ′(z, ζ, Z) is the formula

∃ξ∃Y

[
σ(ζ, Z, ξ, Y ) ∧∧ ξ = {t(z) ≥ 0} ∧∧ Y = [s(z)]β

]
, (3.6)

where ξ, Y , σ(ζ, Z, ξ, Y ), and β are as in items (i), (ii) and (iv) of the statement of

the lemma, but t(z) and s(z) are L ℓ-Cs.a.-mod-terms. By Corollary 3.2.4, there exist

m1, n1,m2, n2 ∈ N and L Cs.a.(X)-mod-terms tij(z) and skl(z) such that t(z) is equivalent

to
∨m1

i=1

∧n1

j=1 tij(z) and s(z) is equivalent to
∨m2

k=1

∧n2

l=1 skl(z) modulo MX ; in particular,

(3.6) is equivalent to

∃ξ∃Y

[
σ(ζ, Z, ξ, Y ) ∧∧ ξ =

m1⊔
i=1

n1l

j=1

{tij(z) ≥ 0} ∧∧ Y = max
1≤k≤m2

min
1≤l≤n2

[skl(z)]β︸ ︷︷ ︸
(∗)

]
, (3.7)

modulo MX by Remark 2.4.14 and Theorem 2.3.2 (III), where (∗) is a shorthand for

the obvious L ring(≤, m)-formula. Let ξij be new space variables for each i ∈ [m1] and

j ∈ [n1], and let Ykl be new germ variables for each k ∈ [m2] and l ∈ [n2]; then (3.7)
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is equivalent to

∃ξ∃ξij∃Y ∃Ykl

[
σ(ζ, Z, ξ, Y ) ∧∧ ξ =

m1⊔
i=1

n1l

j=1

ξij ∧∧ Y = max
1≤k≤m2

min
1≤l≤n2

Ykl ∧∧

m1∧∧
i=1

n1∧∧
j=1

ξij = {tij(z) ≥ 0} ∧∧
m2∧∧
k=1

n2∧∧
l=1

Ykl = [skl(z)]β

]
, (3.8)

modulo MX , and clearly (3.8) is a formula of the form (3.5) satisfying all items (i) -

(iv) in the statement of the lemma, as required.

Lemma 3.2.6. Every L const
X -formula φ(z, ζ, Z) without home quantifiers is equivalent

modulo M const
X to an L const

X -formula of the form (♠).

Proof. Analogous to the proof of Lemma 3.2.5.

Lemma 3.2.7. Suppose that every LX-formula of the form

∃x

[
m∧∧
i=1

ξi = {ti(z, x) ≥ 0} ∧∧
n∧∧
i=1

Yj = [sj(z, x)]βj

]
(W)

is equivalent modulo M const
X to an L const

X -formula without home quantifiers, where

(i) x is a home variable;

(ii) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables;

(iii) t1(z, x), . . . , tm(z, x) and s1(z, x), . . . , sn(z, x) are L Cs.a.(X)-mod-terms; and

(iv) β1, . . . , βn are half-branches of X.

Then every L const
X -formula is equivalent modulo M const

X to an L const
X -formula without

home quantifiers.

Proof. This follows by writing L const
X -formulas in prenex normal form and then in-

ducting over home quantifiers using Lemma 3.2.6; see the proof of Proposition 2.1.9

or the proof of Theorem 2.4.29.

Lemma 3.2.8. Suppose that that every LX-formula of the form

∃x

[
m∧∧
i=1

ξi = {ti(z, x) ≥ 0} ∧∧
n∧∧
j=1

Yj = [x]βj

]
(W1)

is equivalent modulo M const
X to an L const

X -formula without home quantifiers, where
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(i) x is a home variable;

(ii) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables;

(iii) t1(z, x), . . . , tm(z, x) are L Cs.a.(X)-mod-terms; and

(iv) β1, . . . , βn are half-branches of X.

Then every L const
X -formula is equivalent modulo M const

X to an L const
X -formula without

home quantifiers.

Proof. Let φ(z, ξ, Y ) be an LX-formula of the form (W); by Lemma 3.2.7 it suffices

to show that φ(z, ξ, Y ) is equivalent modulo M const
X to an L const

X -formula without

home quantifiers. For each j ∈ [n] there exists fj ∈ Cs.a.(X) and an L Cs.a.(X)-mod-

term s′j(z) such that sj(z, x) = s′j(z) + fj · x, and since [−]βj : Cs.a.(X) −↠ OR is

a ring homomorphism, φ(z, ξ, Y ) is equivalent to the formula (with germ parameters

[fj]βj ∈ OR for j ∈ [n])

∃Y ′
1 . . . Y

′
n

(
n∧∧
i=1

Yj = [s′j(z)]βj + [fj]βjY
′
j ∧∧

∃x

[
m∧∧
i=1

ξi = {ti(z, x) ≥ 0} ∧∧
n∧∧
i=1

Y ′
j = [x]βj

]
︸ ︷︷ ︸

φ′(z,ξ,Y ′)

)
.

The formula φ′(z, ξ, Y ′) is of the form (W1), therefore it is equivalent to an L const
X -

formula without home quantifiers by assumption, from which it follows that so is

φ(z, ξ, Y ), as required.

Lemma 3.2.9. Suppose that that every LX-formula of the form

∃x

[
m∧∧
i=1

ξi = {fi · x ≥ ti(z)} ∧∧
n∧∧
j=1

Yj = [x]βj

]
(W2)

is equivalent modulo M const
X to an L const

X -formula without home quantifiers, where

(i) x is a home variable;

(ii) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables;

(iii) t1(z), . . . , tm(z) are L Cs.a.(X)-mod-terms;
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(iv) fi ∈ Cs.a.(X) are scalar functions such that fi ≥ 0 or fi ≤ 0 for all i ∈ [m]; and

(v) β1, . . . , βn are pairwise distinct half-branches of X.

Then every L const
X -formula is equivalent modulo M const

X to an L const
X -formula without

home quantifiers.

Proof. Let φ(z, ξ, Y ) be an LX-formula of the form (W1); by Lemma 3.2.8 it suffices to

show that φ(z, ξ, Y ) is equivalent modulo M const
X to an L const

X -formula without home

quantifiers. Suppose that there exists j0 ∈ [n] and ∅ ̸= S ⊆ [n] \ {j0} such that

βj0 = βj for all j ∈ S; then φ(z, ξ, Y ) is equivalent to

∧∧
j∈S

Yj = Yj0 ∧∧ ∃x

 m∧∧
i=1

ξi = {ti(z, x) ≥ 0} ∧∧
∧∧
j /∈S

Yj = [x]βj

 ,
from which it follows that it can be assumed that all half-branches βj appearing as

germ function symbols [−]βj in φ(z, ξ, Y ) are pairwise distinct. For each i ∈ [n] there

exists fi ∈ Cs.a.(X) and an L Cs.a.(X)-mod-term t′i(z) such that ti(z, x) = −t′i(z) + fi · x,

therefore {ti(z, x) ≥ 0} = {fi · x ≥ t′i(z)}. Note that for each i ∈ [n], the formula

ξi = {fi · x ≥ t′i(z)} is equivalent modulo M const
X to the conjunction of the formulas

(with space parameters {fi ≥ 0}, {fi ≤ 0} ∈ LX)

(i) ξi ⊓ {fi ≥ 0} = {(fi ∨ 0) · x ≥ ti(z)} ⊓ {fi ≥ 0}, and

(ii) ξi ⊓ {fi ≤ 0} = {(fi ∧ 0) · x ≥ ti(z)} ⊓ {fi ≤ 0}.

It follows that φ(z, ξ, Y ) is equivalent modulo M const
X to the L const

X -formula

∃ξ+∃ξ−
(

m∧∧
i=1

ξi ⊓ {fi ≥ 0} = ξ+i ⊓ {fi ≥ 0} ∧∧
m∧∧
i=1

ξi ⊓ {fi ≤ 0} = ξ−i ⊓ {fi ≤ 0} ∧∧

ψ


∃x

[
m∧∧
i=1

ξ+i = {(fi ∨ 0) · x ≥ t′i(z)} ∧∧
m∧∧
i=1

ξ−i = {(fi ∧ 0) · x ≥ t′i(z)} ∧∧

n∧∧
i=1

Yj = [x]βj

])
.

The formula ψ(z, ξ+, ξ+, Y ) is of the form (W2), therefore it is equivalent to an L const
X -

formula without home quantifiers by assumption, from which it follows that so is

φ(z, ξ, Y ), as required.
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3.3 Elimination steps

3.3.1 Eliminating home quantifiers in formulas (⋆1)

Lemma 3.3.1. Let f, g ∈ Cs.a.(X), F1, . . . , Fn ∈ OR, and β1, . . . , βn be half-branches

of X at b1, . . . , bn, respectively. Let also {a1, . . . , am} := ∂X({f = 0}). The following

are equivalent:

(i) There exists h ∈ Cs.a.(X) such that g = f · h and Fl = [h]βl for all l ∈ [n].

(ii) {f = 0} ⊆ {g = 0}, [g]βl = [f ]βlFl for all l ∈ [n], and there exists h0 ∈ Cs.a.(X)

and ε > 0 such that
⋃
i∈[m]Bε(ai) ⊆ {g = f · h0} and Fl = [h0]βl for all l ∈ [n].

Proof. The implication (i) ⇒ (ii) is obvious, so suppose that (ii) holds and let h0 ∈

Cs.a.(X) and ε > 0 witness this. Since [g]βl = [f ]βlFl = [f ]βl [h0]βl = [f · h0]βl , for each

l ∈ [n] there exists a curve interval Cl of βl such that Cl ⊆ {g = f ·h0} by Proposition

2.3.35 (iv). Define D1 :=
⋃
i∈[m]Bε(ai) ∪

⋃
l∈[n]Cl and h1 := h0↾D1 , noting that D1 ⊆

{g↾D1 = f↾D1 ·h1}. It now suffices to find h ∈ Cs.a.(X) such that h↾D1 = h1 and g = f ·h,

since for any such h one has h↾Cl
= h1↾Cl

= h0↾Cl
and hence [h]βl = [h0]βl = Fl for all

l ∈ [n].

Let D2 := D1 ∪ {f = 0}. By the semi-algebraic Tietze extension theorem (see

Theorem 2.3.17) there exists h2 : D2 −→ R continuous and semi-algebraic such that

h2↾D1 = h1. Since {f = 0} ⊆ {g = 0}, it follows by choice of h2 that D2 ⊆ {g↾D2 =

f↾D2 · h2}. Let now D3 := clX(X \D2). Since clX(X \D2) = X \ intX(D2), it follows

that D3 ∩ {f = 0} = ∅: indeed, if a ∈ {f = 0}, then either a ∈ intX({f = 0}), in

which case a ∈ intX(D2), or a ∈ ∂X({f = 0}), in which case a = ai for some i ∈ [m]

and thus a ∈ intX(D1) ⊆ intX(D2). In particular, the function h3 : D3 −→ R defined

by h3(x) := g(x)/f(x) is well-defined, continuous, and semi-algebraic. To conclude,

note that X = D2 ∪D3 and define h : X −→ R by

h(x) :=

h2(x) if x ∈ D2

h3(x) if x ∈ D3.

If x ∈ D2 ∩ D3, then f(x) ̸= 0 by the above and h3(x) = g(x)/f(x) by definition of

h3, and also g(x)/f(x) = (f(x)h2(x))/f(x) = h2(x) since D2 ⊆ {g↾D2 = f↾D2 · h2}. It

follows that h ∈ Cs.a.(X) and it satisfies h↾D1 = h1 and g = f · h by construction, as

required.
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Lemma 3.3.2. Let f, g ∈ Cs.a.(X), F1, . . . , Fn ∈ OR, and β1, . . . , βn be pairwise dis-

tinct half-branches of X centred at b1, . . . , bn, respectively. Let also {a1, . . . , am} :=

∂X({f = 0}), and for each i ∈ [m], let γi,1, . . . , γi,ni
be all the half-branches of X at

ai. The following are equivalent:

(I) There exists h0 ∈ Cs.a.(X) and ε > 0 such that
⋃
i∈[m]Bε(ai) ⊆ {g = f · h0} and

Fl = [h0]βl for all l ∈ [n].

(II) The following conditions hold:

(i) For all l1, l2 ∈ [n], if bl1 = bl2, then Fl1 − Fl2 ∈ m.

(ii) There exist Hij ∈ OR for all i ∈ [m] and all j ∈ [ni] such that the following

conditions hold:

(a) For all i ∈ [m], and all j1, j2 ∈ [ni], Hij1 −Hij2 ∈ m.

(b) For all i ∈ [m] and all j ∈ [ni], [g]γi,j = [f ]γi,jHij.

(c) For all i ∈ [m], all j ∈ [ni], and all l ∈ [n], if γi,j = βl, then Hij = Fl.

Proof. (I) ⇒ (II). If l1, l2 ∈ [n] and bl1 = bl2 , then βl1 and βl2 are two half-branches

of X centred at the same point, therefore Fl1 − Fl2 = [h0]βl1 − [h0]βl2 ∈ m follows by

Proposition 2.3.35 (ii). Set Hij := [h0]γi,j for all i ∈ [n] and all j ∈ [ni]. Then (a)

holds by the same argument as above, and (c) holds trivially. To prove that (b) holds,

pick i ∈ [m] and j ∈ [ni]. Then, choosing a smaller ε > 0 if necessary, there exists a

connected component U of Bε(ai) \ {ai} such that C := clX(U) is a curve interval of

γi,j; such curve interval satisfies C ⊆ {g = f ·h0}, which implies by Proposition 2.3.35

(iv) that [g]γi,j = [f · h0]γi,j = [f ]γi,j [h0]γi,j = [f ]γi,jHij, as required.

(II) ⇒ (I). Let Hij ∈ OR be as in item (ii). For each l ∈ [n], let fl ∈ Cs.a.(X) be

such that Fl = [fl]βl , and for all i ∈ [m] and all j ∈ [ni] let hij ∈ Cs.a.(X) be such that

Hij = [hij]γi,j . In particular, by Proposition 2.3.35 (iv) items (b) and (c) respectively

imply that:

(b’) For all i ∈ [m] and all j ∈ [ni], there exists a curve interval Cij of γij such that

Cij ⊆ {g = f · hij}.

(c’) For all i ∈ [m], all j ∈ [ni], and all l ∈ [n], if γij = βl, then there exists a curve

interval Cij of γij, = βl such that Cij ⊆ {hij = fl}.
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It follows that by choosing small enough curve intervals, there exist curve intervals

Cij of γi,j and curve intervals Cl of βl such that all the following conditions hold:

1. For all i ∈ [m] and all j ∈ [ni], Cij ⊆ {g = f · hij}.

2. For all i ∈ [m], all j ∈ [ni], and all l ∈ [n], if γi,j = βl, then Cij = Cl and

Cij = Cl ⊆ {hij = fl}.

3. If l1, l2 ∈ [n] and bl1 = bl2 , then Cl1 ∩ Cl2 = {bl1} = {bl2}.

4. If l1, l2 ∈ [n] and bl1 ̸= bl2 , then Cl1 ∩ Cl2 = ∅.

5. For all i ∈ [m], if j1, j2 ∈ [ni] are such that j1 ̸= j2, then Cij1 ∩ Cij2 = {ai}.

6. For all i, i′ ∈ [m], if i ̸= i′, then Cij ∩ Ci′j′ = ∅ for all j ∈ [n] and all j′ ∈ [n′].

7. For all i ∈ [m] and all l ∈ [n], if ai ̸= bl, then Cij ∩ Cl = ∅ for all j ∈ [ni].

Let Di :=
⋃
j∈[ni]

Cij for each i ∈ [m], and let E :=
⋃
l∈[n]Cl. Define hi : Di −→ R

by hi(x) := hij(x) if x ∈ Cij and hE : E −→ R by hE(x) := fl(x) if x ∈ Cl. For each

i ∈ [m], if x ∈ Cij1 ∩Cij2 for some j1, j2 ∈ [ni] such that j1 ̸= j2, then x = ai by item 5

, and hij1(ai) = hij2(ai) by item (a) and Proposition 2.3.35 (ii), therefore hi : Di −→ R

is continuous and semi-algebraic. Similarly, if x ∈ Cl1 ∩ Cl2 for some l1, l2 ∈ [n] such

that l1 ̸= l2, then x = bl1 = bl2 by items 3 and 4, and fl1(bl1) = fl2(bl2) by item (i)

and Proposition 2.3.35 (ii), therefore hE : E −→ R is continuous and semi-algebraic.

Set D :=
⋃
i∈mDi. Since Di ∩ Di′ = ∅ for all i, i′ ∈ [m] such that i ̸= i′ by item 6,

it follows that hD : D −→ R defined by hD(x) := hi(x) if x ∈ Di is continuous and

semi-algebraic.

Define h′ : D ∪ E −→ R by h′(x) := hD(x) if x ∈ D and h′(x) := hE(x) if x ∈ E.

If x ∈ D ∩ E, then there exists i ∈ [m], j ∈ [ni], and l ∈ [n] such that x ∈ Cij ∩ Cl;

by item 7 it follows that ai = bl, and since γi,1, . . . , γi,ni
are all the half-branches of

X at ai and βl is a half-branch of X at bl, there exists j′ ∈ [ni] such that γi,j′ = βl.

If j′ = j, then γi,j = βl, therefore Cij = Cl and hD(x) = hij(x) = fl(x) = hE(x) by

item 2. If j′ ̸= j, then Cij′ = Cl and hij′(x) = fl(x) = hE(x) by item 2; moreover,

Cij′ = Cl and x ∈ Cij∩Cl together imply x = ai by item 5, therefore hD(x) = hij(ai) =

hij′(ai) = hij′(x) = hE(x), where hij(ai) = hij′(ai) holds by (a) and Proposition 2.3.35

(ii). Altogether, this shows that h′ : D ∪ E −→ R is continuous and semi-algebraic.
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Pick any h0 ∈ Cs.a.(X) extending h′ (see Theorem 2.3.17). For each i ∈ [m], the

set Di is a neighbourhood of ai in X by construction, therefore there exists ε > 0 such

that Bε(ai) ⊆ Di for all i ∈ [m]. Since h0 extends hij on each Cij and
⋃
i∈[m]Bε(ai) ⊆⋃

i∈[m]

⋃
j∈[ni]

Cij by construction, it follows by item 1 that
⋃
i∈[m]Bε(ai) ⊆ {g = f ·h0};

since h0 extends fl on each Cl, it follows that Cl ⊆ {h0 = fl}, hence [h0]βl = [fl]βl = Fl

by Proposition 2.3.35 (iv), as required.

The condition (II) (ii) (c) in Lemma 3.3.2 involves an equality of half-branches of

X. Two half-branches β1 and β2 of X are equal if and only if their corresponding prime

filters fβ1 and fβ2 in the lattice LX are equal (see Definition 2.3.33). In what follows

it will be shown that each prime filter of LX of the form fβ for a half-branch β of X

is definable in LX with parameters, making thus the statement β1 = β2 expressible in

the lattice LX .

Lemma 3.3.3. For every a ∈ X, the set of curve intervals of X at a is {a}-definable

in the L lat(⊤,⊥)-structure LX , where a := {a} ∈ LX .

Proof. Note first that the set of atoms of LX is defined by the formula (in the free

variable ζ)

ζ ̸= ⊥ ∧∧ ∀ξ[(ξ ̸= ⊥ ∧∧ ξ ⊑ ζ) → ξ = ζ],

and the set of those C ∈ LX which are semi-algebraically connected in X is defined

by the formula (in the free variable ζ)

∀ξ1ξ2[(ξ1 ̸= ⊥ ≠ ξ2 ∧∧ ξ1 ⊓ ξ2 = ⊥ ∧∧ ζ = ξ1 ⊔ ξ2) → (ζ = ξ1 ∨∨ ζ = ξ2)].

It follows from Lemma 2.3.31 and its proof that the set of those C ∈ LX which are

curve intervals of X at a is defined by the formula (with parameter a and in the free

variable ζ) expressing: “ζ is semi-algebraically connected, a ⊑ ζ, and there exists an

atom b ∈ LX contained in ζ and distinct from a such that ζ is minimal in LX amongst

those semi-algebraically connected D ∈ LX with a , b ⊑ D”.

Remark 3.3.4. The proof of Lemma 3.3.3 shows that the set of all curve intervals of

X is an ∅-definable subset of LX . In [Tre17, Section 4] is given another L lat(⊤,⊥)-

formula without parameters which defines the set of all those C ∈ LX which are curve

intervals of X.
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Definition 3.3.5. Fix a curve interval Cβ of β for each a ∈ X and each half-branch

β of X at a. Define the L lat(⊤,⊥)-formula PrimFβ(ζ) with parameters {a, Cβ} to be

the one expressing: “there exists a curve interval C of a contained in Cβ such that

C ⊑ ζ.”

Lemma 3.3.6. Let a ∈ X and β be a half-branch of X at a. The formula PrimFβ(ζ)

with parameters {a, Cβ} defines the prime filter fβ = {C ∈ LX | C ∈ β} in LX .

Proof. Let D ∈ LX , suppose first that LX |= PrimFβ(D), and let C ∈ LX be a curve

interval witnessing this. Then C and Cβ have the same germ at a, therefore C ∈ β

and hence C ∈ fβ; since C ⊆ D and fβ is a filter of LX , D ∈ fβ follows. Conversely, if

D ∈ fβ then D ∈ β, and since β is a half-branch of X at a, there exists a curve interval

C0 of β such that C0 ⊆ D by Lemma 2.3.28, from which it follows that there exists a

curve interval C of β contained in C0∩Cβ, and such C witnesses LX |= PrimFβ(D).

Corollary 3.3.7. Let f ∈ Cs.a.(X) and let β1, . . . , βn be pairwise distinct half-branches

of X centred at b1, . . . , bn, respectively. Let also {a1, . . . , am} := ∂X({f = 0}), and for

each i ∈ [m], let γi1, . . . , γini
be all the half-branches of X at ai. The LX-formula (in

free variables y, Yl, . . . , Yn)

∃x

(
y = f · x ∧∧

n∧∧
l=1

Yl = [x]βl

)
(3.9)

is equivalent modulo M const
X to the formula

∃ζ∃Y ′∃Z

(
ψ(ζ, Y , Y ′, Z) ∧∧ ζ = {y = 0} ∧∧

n∧∧
l=1

Y ′
l = [y]βl ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

Zij = [y]γij

)
(3.10)

where ψ(ζ, Y , Y ′, Z) is the L const
X -formula

{f = 0} ⊑ ζ ∧∧
∧∧
l∈[n]

Y ′
l = [f ]βlYl ∧∧

∧∧
l1,l2∈[n]

bl1 = bl2 → m(Yl1 − Yl2) ∧∧

∃Z ′

(∧∧
i∈[m]

∧∧
j1,j2∈[ni]

m(Z ′
ij1

− Z ′
ij2
) ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

Zij = [f ]γijZ
′
ij ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

∧∧
l∈[n]

∀ξ(PrimFγij(ξ) ↔ PrimFβl(ξ)) → Z ′
ij = Yl

)
.
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Proof. The formula (3.10) is equivalent to the formula

{f = 0} ⊑ {y = 0} ∧∧
∧∧
l∈[n]

[y]βl = [f ]βlYl ∧∧
∧∧

l1,l2∈[n]

b l1 = b l2 → m(Yl1 − Yl2) ∧∧

∃Z ′

(∧∧
i∈[m]

∧∧
j1,j2∈[ni]

m(Z ′
ij1

− Z ′
ij2
) ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

[y]γij = [f ]γijZ
′
ij ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

∧∧
l∈[n]

∀ξ(PrimFγij(ξ) ↔ PrimFβl(ξ)) → Z ′
ij = Yl

)
.

and this latter formula is clearly equivalent to (3.9) by Lemma 3.3.1 and Lemma

3.3.2.

Proposition 3.3.8. Let f ∈ Cs.a.(X) and let β1, . . . , βn be pairwise distinct half-

branches of X. The LX-formula (in free variables y, Yl, . . . , Yn)

∃x

(
y = f · x ∧∧

n∧∧
l=1

Yl = [x]βl

)
(⋆1)

is equivalent modulo M const
X to a formula of the form

∃ζ∃Y ′

(
ψ(ζ, Y , Y ′) ∧∧ ζ = {y = 0} ∧∧

n′∧∧
l=1

Y ′
l = [y]β′

l

)
, (3.11)

where ψ(ζ, Y , Y ′) is a Boolean combination of space formulas with parameters and

germ formulas with parameters, and β′
1, . . . , β

′
n′ are pairwise distinct half-branches.

Proof. For each l ∈ [n], let bl be the point at which βl is centred. Let {a1, . . . , am} :=

∂X({f = 0}), and for each i ∈ [m], let γi1, . . . , γini
be all the half-branches of X at ai.

By Corollary 3.3.7, the formula (⋆1) is equivalent to

∃ζ∃Y ′∃Z

(
ψ(ζ, Y , Y ′, Z) ∧∧ ζ = {y = 0} ∧∧

n∧∧
l=1

Y ′
l = [y]βl ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

Zij = [y]γij

)
, (3.12)

where ψ(ζ, Y , Y ′, Z) is the L const
X -formula defined as in Corollary 3.3.7. Let S be the

set of triples (i, j, l) such that γij = βl and T be the set of those l ∈ [n] for which there
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does not exist i ∈ [m] and j ∈ [ni] such that (i, j, l) ∈ S; then (3.12) is equivalent to

∃ζ∃Y ′∃Z

( (∗)︷ ︸︸ ︷
ψ(ζ, Y , Y ′, Z) ∧∧

∧∧
(i,j,l)∈S

Zij = Y ′
l ∧∧

ζ = {y = 0} ∧∧
∧∧
l∈T

Y ′
l = [y]βl ∧∧

∧∧
i∈[m]

∧∧
j∈[ni]

Zij = [y]γij

)
, (3.13)

and γij and βl are pairwise distinct half-branches of X for all i ∈ [m], j ∈ [ni] and

l ∈ T . The formula (∗) is a (L const
X )↾Σ-formula, therefore it is equivalent to a Boolean

combination of space formulas with parameters and germ formulas with parameters

by Lemma 2.1.6 (see also the proof of Lemma 3.2.5), from which it follows that (3.13)

is equivalent to a formula of the form (3.11).

3.3.2 Eliminating home quantifiers in formulas (⋆2)

Lemma 3.3.9. Let F1, . . . , Fn ∈ OR, and β1, . . . , βn be pairwise distinct half-branches

of X at b1, . . . , bn, respectively. Suppose that for all l1, l2 ∈ [n], if bl1 = bl2, then

Fl1 −Fl2 ∈ m. Then for all h1, . . . , hn ∈ Cs.a.(X) such that [hl]βl = Fl there exist curve

intervals C1, . . . , Cn of β1, . . . , βn (respectively) and h ∈ Cs.a.(X) such that Cl ⊆ {h =

hl} for all l ∈ [n].

Proof. For each l ∈ [n], pick hl ∈ Cs.a.(X) such that Fl = [hl]βl and a curve interval

Cl of βl. Since β1, . . . , βn are pairwise distinct, one may choose the curve intervals Cl

such that Cl1 ∩ Cl2 = {bl1} = {bl2} if bl1 = bl2 , and Cl1 ∩ Cl2 = ∅ if bl1 ̸= bl2 for all

l1, l2 ∈ [n] such that l1 ̸= l2. Define h0 :
⋃
l∈[n]Cl −→ R by h0(x) := hl(x) if x ∈ Cl. If

l1, l2 ∈ [n] are such that l1 ̸= l2 and x ∈ Cl1 ∩ Cl2 , then x = bl1 = bl2 by choice of the

curve intervals Cl, therefore

hl1(x) = hl1(bl1) = hl1(bl2)
(∗)
= hl2(bl2) = hl2(x),

where (∗) follows from [hl1 ]βl1−[hl2 ]βl2 = Fl1−Fl2 ∈ m and Proposition 2.3.35 (ii). This

shows that h0 :
⋃
l∈[n]Cl −→ R is continuous and semi-algebraic. Let h ∈ Cs.a.(X) be

any continuous semi-algebraic extension of h0; then h satisfies Cl ⊆ {h = hl} for all

l ∈ [n], as required.

Lemma 3.3.10. Let f, g ∈ Cs.a.(X), D1, D2 ∈ LX , F1, . . . , Fn ∈ OR, and β1, . . . , βn

be pairwise distinct half-branches of X at b1, . . . , bn. The following are equivalent:
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(I) There exists h ∈ Cs.a.(X) such that

D1 ⊆ {h ≥ f} ∧∧ D2 ⊆ {h ≤ g} ∧∧
n∧∧
l=1

Fl = [h]βl .

(II) The following conditions hold:

(i) For all l1, l2 ∈ [n], if bl1 = bl2, then Fl1 − Fl2 ∈ m.

(ii) D1 ∩D2 ⊆ {f ≤ g}.

(iii) For all l ∈ [n], the following conditions hold:

(a) If D1 ∈ fβl, then Fl ≥ [f ]βl.

(b) If D1 /∈ fβl and bl ∈ D1, then Fl/m ≥ [f ]βl/m.

(c) If D2 ∈ fβl, then Fl ≤ [g]βl.

(d) If D2 /∈ fβl and bl ∈ D2, then Fl/m ≤ [g]βl/m.

Proof. (I) ⇒ (II). Pick l1, l2 ∈ [n] and suppose that bl1 = bl2 ; then βl1 and βl2 are two

half-branches of X centred at the same point, therefore Fl1 − Fl2 = [h]βl1 − [h]βl2 ∈ m

by Proposition 2.3.35 (ii) and thus (i) holds. Also, D1 ∩D2 ⊆ {h ≥ f} ∩ {h ≤ g} ⊆

{f ≤ g}, therefore (ii) holds. Fix now l ∈ [n]. If D1 ∈ fβl , then by Lemma 2.3.28 there

exists a curve interval C of βl such that C ⊆ D1, therefore C ⊆ {h ≥ f} and thus

Fl = [h]βl ≥ [f ]βl by Proposition 2.3.35 (iv); this shows that (a) holds, and (c) holds

analogously. If D1 /∈ fβl and bl ∈ D1, then bl ∈ {h ≥ f}, therefore h(bl) ≥ f(bl), and

thus Fl/m = [h]βl/m ≥ [f ]βl/m by Proposition 2.3.35 (ii); this shows that (d) holds,

and (d) holds analogously.

(II) ⇒ (I). For each l ∈ [n], pick hl ∈ Cs.a.(X) such that Fl = [hl]βl . By item (i)

and Lemma 3.3.9 there exist curve intervals C ′
1, . . . , C

′
n of β1, . . . , βn (respectively) and

h′ ∈ Cs.a.(X) such that C ′
l ⊆ {h′ = hl} for all l ∈ [n]. It now suffices to prove that

there exist curve intervals C1, . . . , Cn of β1, . . . , βn (respectively) and h ∈ Cs.a.(X) such

that

D1 ⊆ {h ≥ f} ∧∧ D2 ⊆ {h ≤ g} ∧∧
∧∧
l∈[n]

Cl ⊆ {h′ = h},
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that is, such that (
D1 ⊆ {h ≥ f} ∧∧

∧∧
l∈[n]

Cl ⊆ {h ≥ h′}

)
∧∧(

D2 ⊆ {h ≤ g} ∧∧
∧∧
l∈[n]

Cl ⊆ {h ≤ h′}

)
.

Indeed, if such C1, . . . , Cn and h exist, then C ′
l ∩ Cl ∈ βl for each l ∈ [n], hence there

exists a curve interval C ′′
l of βl such that C ′′

l ⊆ C ′
l ∩ Cl by Lemma 2.3.28, therefore

C ′′
l ⊆ {h′ = hl} ∩ {h′ = h} ⊆ {h = hl}, hence [h]βl = [hl]βl = Fl by Proposition 2.3.35

(iv). By Lemma 2.4.18, it suffices in turn to show that there exist curve intervals

C1, . . . , Cn of β1, . . . , βn such that all the conditions below hold:

1. There exists h ∈ Cs.a.(X) such that D1 ⊆ {h ≥ f} and D2 ⊆ {h ≤ g}.

2. For all l ∈ [n] there exists h ∈ Cs.a.(X) such that

D1 ⊆ {h ≥ f} and Cl ⊆ {h ≤ h′}.

3. For all l ∈ [n] there exists h ∈ Cs.a.(X) such that

Cl ⊆ {h ≥ h′} and D2 ⊆ {h ≤ g}.

4. For all l1, l2 ∈ [n] there exists h ∈ Cs.a.(X) such that Cl1 ⊆ {h ≥ h′} and

Cl2 ⊆ {h ≤ h′}.

Item 1 holds by item (ii) in the statement of the lemma and Proposition 2.4.25 (I), and

item 4 holds trivially for any choice of curve intervals by taking h := h′. It therefore

remains to show that there exist curve intervals C1, . . . , Cn of β1, . . . , βn such that

conditions 2 and 3 above hold. In turn, this is equivalent to showing that for all l ∈ [n]

there exists a curve interval Cl of βl such that the following two conditions hold for

Cl:

2’. There exists h ∈ Cs.a.(X) such that D1 ⊆ {h ≥ f} and Cl ⊆ {h ≤ h′}.

3’. There exists h ∈ Cs.a.(X) such that Cl ⊆ {h ≥ h′} and D2 ⊆ {h ≤ g}.

By Proposition 2.4.25 (I), it suffices to prove that for all l ∈ [n] there exists a curve

interval Cl of βl such that

Cl ∩D1 ⊆ {f ≤ h′} and Cl ∩D2 ⊆ {h′ ≤ g}. (∗)
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For what follows, recall that C ′
l ⊆ {h′ = hl} for all l ∈ [n], so that in particular

[h′]βl = [hl]βl = Fl. Fix l ∈ [n]; then exactly one of the following situations holds:

- D1 ∈ fβl . In this case there exists a curve interval I of βl such that I ⊆ D1∩{f ≤

h′} by item (a); in particular I ∩D1 ⊆ {f ≤ h′}.

- D1 /∈ fβl and bl ∈ D1. In this case there exists a curve interval I of βl such that

I ∩D1 = {bl} and bl ∈ {f ≤ h′} by item (b); in particular I ∩D1 ⊆ {f ≤ h′}.

- bl /∈ D1. In this case exists a curve interval I of βl such that I ∩ D1 = ∅; in

particular I ∩D1 ⊆ {f ≤ h′}.

In either of the cases above there exists a curve interval I of βl such that I ∩ D1 ⊆

{f ≤ h′}. Similarly, there exists a curve interval J of βl such that J ∩D2 ⊆ {h′ ≤ g}

appealing this time to items (c) and (d). Since I ∩J ∈ βl, there exists a curve interval

Cl of βl such that Cl ⊆ I ∩ J ; such curve interval satisfies (∗), and this concludes the

proof.

Lemma 3.3.11. Let f, g ∈ Cs.a.(X), D1, D2 ∈ LX , F1, . . . , Fn ∈ OR, and β1, . . . , βn

be pairwise distinct half-branches of X at b1, . . . , bn. The following are equivalent:

(I) There exists h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 ∧∧ D2 ⊆ {h ≤ g} ∧∧
n∧∧
l=1

Fl = [h]βl .

(II) The following conditions hold:

(i) For all l1, l2 ∈ [n], if bl1 = bl2, then Fl1 − Fl2 ∈ m.

(ii) D2 ∩ {g ≤ f} ⊆ D1.

(iii) For all l ∈ [n], the following conditions hold:

(a) If Fl ≤ [f ]βl, then D1 ∈ fβl.

(b) If Fl/m ≤ [f ]βl/m, then bl ∈ D1.

(c) If D2 ∈ fβl, then Fl ≤ [g]βl.

(d) If D2 /∈ fβl and bl ∈ D2, then Fl/m ≤ [g]βl/m.

(iv) There exists D′
1 ∈ LX such that the following conditions hold:
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(a) D′
1 ∪D1 = X and D′

1 ∩D2 ⊆ {f ≤ g}.

(b) For all l ∈ [n], the following conditions hold:

(a’) If D′
1 ∈ fβl, then Fl ≥ [f ]βl.

(b’) If D′
1 /∈ fβl and bl ∈ D′

1, then Fl/m ≥ [f ]βl/m.

Proof. (I) ⇒ (II). Item (i) holds using the same argument as in the proof of (I) ⇒ (II)

(i) in Lemma 3.3.10. Also, D2 ∩ {g ≤ f} ⊆ {h ≤ g} ∩ {g ≤ f} ⊆ {h ≤ f} ⊆ D1,

therefore (ii) holds. Fix l ∈ [n]. If [h]βl = Fl ≤ [f ]βl , then there exists a curve interval

C of βl such that C ⊆ {h ≤ f} ⊆ D1 by Proposition 2.3.35 (iv), therefore D1 ∈ fβl

and thus (iii) (a) holds. Similarly, if [h]βl/m = Fl/m ≤ [f ]βl/m, then h(bl) ≤ f(bl) by

Proposition 2.3.35 (ii), therefore bl ∈ {h ≤ f} ⊆ D1, and thus (iii) (b) holds. Items

(iii) (c) and (iii) (d) hold using the same arguments as in the proof of (I) ⇒ (II) (iii)

in Lemma 3.3.10. Define D′
1 := {h ≥ f}. Then D′

1 ∪D1 ⊇ {h ≥ f} ∪ {h ≤ f} = X

and D′
1 ∩D2 ⊆ {h ≥ f} ∩ {h ≤ g} ⊆ {f ≤ g}, therefore (iv) (a) holds. Item (iv) (b)

holds by the same arguments used to show that items (iii) (c) and (iii) (d) hold.

(II) ⇒ (I). For each l ∈ [n], pick hl ∈ Cs.a.(X) such that Fl = [hl]βl . By item (i)

and Lemma 3.3.9 there exist curve intervals C ′
1, . . . , C

′
n of β1, . . . , βn (respectively) and

h′ ∈ Cs.a.(X) such that C ′
l ⊆ {h′ = hl} for all l ∈ [n]. Using the same argument as

in the proof of Lemma 3.3.10, it now suffices to prove that there exist curve intervals

C1, . . . , Cn of β1, . . . , βn (respectively) and h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 ∧∧ D2 ⊆ {h ≤ g} ∧∧
∧∧
l∈[n]

Cl ⊆ {h′ = h},

that is, such that  ∧∧
l∈[n]

Cl ⊆ {h ≥ h′}

 ∧∧ {h ≤ f} ⊆ D1 ∧∧

D2 ⊆ {h ≤ g} ∧∧
∧∧
l∈[n]

Cl ⊆ {h ≤ h′})

 .

By Lemma 2.4.18, it suffices in turn to show that there exist curve intervals C1, . . . , Cn

of β1, . . . , βn such that all the conditions below hold:

1. For all l ∈ [n] there exists h ∈ Cs.a.(X) such that

Cl ⊆ {h ≥ h′} and D2 ⊆ {h ≤ g}.



CHAPTER 3. THE LATTICE-ORDERED MODULE Cs.a.(X) 102

2. For all l1, l2 ∈ [n] there exists h ∈ Cs.a.(X) such that Cl1 ⊆ {h ≥ h′} and

Cl2 ⊆ {h ≤ h′}.

3. There exists h ∈ Cs.a.(X) such that {h ≤ f} ⊆ D1 and D2 ⊆ {h ≤ g}.

4. For all l ∈ [n] there exists h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 and Cl ⊆ {h ≤ h′}.

Item 2 holds trivially for any choice of curve intervals by taking h := h′, and item 3

holds by Proposition 2.4.25 (II) appealing to items (ii) and (iv) (a) in the statement

of the lemma. It therefore remains to show that there exist curve intervals C1, . . . , Cn

of β1, . . . , βn such that conditions 1 and 4 above hold. In turn, this is equivalent to

showing that for all l ∈ [n] there exists a curve interval Cl of βl such that the following

two conditions hold for Cl:

1’. There exists h ∈ Cs.a.(X) such that Cl ⊆ {h ≥ h′} and D2 ⊆ {h ≤ g}.

4’. There exists h ∈ Cs.a.(X) such that {h ≤ f} ⊆ D1 and Cl ⊆ {h ≤ h′}.

By items (I) and (II) of Proposition 2.4.25 it suffices to prove that for all l ∈ [n] there

exists a curve interval Cl of βl such that

Cl ∩D2 ⊆ {h′ ≤ g}, Cl ∩ {h′ ≤ f} ⊆ D1, and D
′
1 ∩ Cl ⊆ {f ≤ h′}. (∗)

For what follows, recall that C ′
l ⊆ {h′ = hl} for all l ∈ [n], so that in particular

[h′]βl = [hl]βl = Fl. Fix l ∈ [n]; then exactly one of the following situations holds:

- {h′ ≤ f} ∈ fβl . In this case Fl ≤ [f ]βl , therefore by item (iii) (a) there exists a

curve interval I of βl such that I ⊆ {h′ ≤ f}∩D1; in particular I∩{h′ ≤ f} ⊆ D1.

- {h′ ≤ f} /∈ fβl and bl ∈ {h′ ≤ f}. In this case there exists a curve interval I of

βl such that I ∩ {h′ ≤ f} = {bl}. Also, Fl/m ≤ [f ]βl/m, therefore bl ∈ D1 by

item (iii) (b); in particular I ∩ {h′ ≤ f} ⊆ D1.

- bl /∈ {h′ ≤ f}. In this case exists a curve interval I of βl such that I ∩ {h′ ≤

f} = ∅; in particular I ∩ {h′ ≤ f} ⊆ D1.
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In either of the cases above there exists a curve interval I of βl such that I ∩{h′ ≤

f} ⊆ D1. Using analogous arguments, there exists a curve interval I ′ of βl such that

D′
1 ∩ I ′ ⊆ {f ≤ h′} appealing to items (a’) and (b’), and there exists a curve interval

J of βl such that J ∩D2 ⊆ {h′ ≤ g} appealing to items (iii) (c) and (iii) (d); see also

the end of the proof of (II) ⇒ (I) of Lemma 3.3.10. Since I ′ ∩ I ∩ J ∈ βl, there exists

a curve interval Cl of βl such that Cl ⊆ I ′∩ I ∩J ; such curve interval satisfies (∗), and

this concludes the proof.

Lemma 3.3.12. Let f, g ∈ Cs.a.(X), D1, D2 ∈ LX , F1, . . . , Fn ∈ OR, and β1, . . . , βn

be pairwise distinct half-branches of X at b1, . . . , bn. The following are equivalent:

(I) There exists h ∈ Cs.a.(X) such that

D1 ⊆ {h ≥ f} ∧∧ {h ≥ g} ⊆ D2 ∧∧
n∧∧
l=1

Fl = [h]βl .

(II) The following conditions hold:

(i) For all l1, l2 ∈ [n], if bl1 = bl2, then Fl1 − Fl2 ∈ m.

(ii) D1 ∩ {g ≤ f} ⊆ D2.

(iii) For all l ∈ [n], the following conditions hold:

(a) If Fl ≥ [g]βl, then D2 ∈ fβl.

(b) If Fl/m ≥ [g]βl/m, then bl ∈ D2.

(c) If D1 ∈ fβl, then Fl ≥ [f ]βl.

(d) If D1 /∈ fβl and bl ∈ D1, then Fl/m ≥ [f ]βl/m.

(iv) There exists D′
2 ∈ LX such that the following conditions hold:

(a) D′
2 ∪D2 = X and D′

2 ∩D1 ⊆ {f ≤ g}.

(b) For all l ∈ [n], the following conditions hold:

(a’) If D′
2 ∈ fβl, then Fl ≤ [g]βl.

(b’) If D′
2 /∈ fβl and bl ∈ D′

2, then Fl/m ≤ [g]βl/m.

Proof. Item (I) is equivalent to the statement that there exists h ∈ Cs.a.(X) such that

{h ≤ −g} ⊆ D2 ∧∧ D1 ⊆ {h ≤ −f} ∧∧
n∧∧
l=1

−Fl = [h]βl ,

and this statement is easily seen to be equivalent to item (II) by Lemma 3.3.11.
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Lemma 3.3.13. Let f, g ∈ Cs.a.(X), D1, D2 ∈ LX , F1, . . . , Fn ∈ OR, and β1, . . . , βn

be pairwise distinct half-branches of X at b1, . . . , bn. The following are equivalent:

(I) There exists h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 ∧∧ {h ≥ g} ⊆ D2 ∧∧
n∧∧
l=1

Fl = [h]βl .

(II) The following conditions hold:

(i) For all l1, l2 ∈ [n], if bl1 = bl2, then Fl1 − Fl2 ∈ m.

(ii) For all l ∈ [n], the following conditions hold:

(a) If Fl ≤ [f ]βl, then D1 ∈ fβl.

(b) If Fl/m ≤ [f ]βl/m, then bl ∈ D1.

(c) If Fl ≥ [g]βl, then D2 ∈ fβl.

(d) If Fl/m ≥ [g]βl/m, then bl ∈ D2.

(iii) There exist D′
1, D

′
2 ∈ LX such that the following conditions hold:

(a) D′
1 ∪D1 = D′

2 ∪D2 = X.

(b) D′
1 ∩ {g ≤ f} ⊆ D2 and D′

2 ∩ {g ≤ f} ⊆ D1.

(c) D′
1 ∩D′

2 ⊆ {f ≤ g}.

(d) For all l ∈ [n], the following conditions hold:

(a’) If D′
1 ∈ fβl, then Fl ≥ [f ]βl.

(b’) If D′
1 /∈ fβl and bl ∈ D′

1, then Fl/m ≥ [f ]βl/m.

(c’) If D′
2 ∈ fβl, then Fl ≤ [g]βl.

(d’) If D′
2 /∈ fβl and bl ∈ D′

2, then Fl/m ≤ [g]βl/m.

Proof. (I) ⇒ (II). Item (i) holds using the same argument as in the proof of (I) ⇒

(II) (i) in Lemma 3.3.10, and item (ii) holds using the same argument as in the proof

of (I) ⇒ [(II) (iii) (a) & (II) (iii) (b)] in Lemma 3.3.11. Define D′
1 := {h ≥ f}

and D′
2 := {h ≤ g}; the proof that item (iii) holds for this choice of D′

1, D
′
2 ∈ Lx

is straightforward using the same arguments as in the proofs of the aforementioned

lemmas.

(II) ⇒ (I). For each l ∈ [n], pick hl ∈ Cs.a.(X) such that Fl = [hl]βl . By item (i)

and Lemma 3.3.9 there exist curve intervals C ′
1, . . . , C

′
n of β1, . . . , βn (respectively) and
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h′ ∈ Cs.a.(X) such that C ′
l ⊆ {h′ = hl} for all l ∈ [n]. Using the same argument as

in the proof of Lemma 3.3.10, it now suffices to prove that there exist curve intervals

C1, . . . , Cn of β1, . . . , βn (respectively) and h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 ∧∧ {h ≥ g} ⊆ D2 ∧∧
∧∧
l∈[n]

Cl ⊆ {h′ = h},

that is, such that ∧∧
l∈[n]

Cl ⊆ {h ≥ h′}

 ∧∧ {h ≤ f} ⊆ D1 ∧∧

∧∧
l∈[n]

Cl ⊆ {h ≤ h′}

 ∧∧ {h ≥ g} ⊆ D2.

By Lemma 2.4.18, it suffices in turn to show that there exist curve intervals C1, . . . , Cn

of β1, . . . , βn such that all the conditions below hold:

1. For all l1, l2 ∈ [n] there exists h ∈ Cs.a.(X) such that Cl1 ⊆ {h ≥ h′} and

Cl2 ⊆ {h ≤ h′}.

2. For all l ∈ [n] there exists h ∈ Cs.a.(X) such that

Cl ⊆ {h ≥ h′} and {h ≥ g} ⊆ D2.

3. For all l ∈ [n] there exists there exists h ∈ Cs.a.(X) such that

{h ≤ f} ⊆ D1 and Cl ⊆ {h ≤ h′}.

4. There exists h ∈ Cs.a.(X) such that {h ≤ f} ⊆ D1 and {h ≥ g} ⊆ D2.

Item 1 holds for any choice of curve intervals by taking h := h′, and item 4 holds by

Proposition 2.4.25 (IV) appealing to items (iii) (a) - (iii) (c). It therefore remains to

show that there exist curve intervals C1, . . . , Cn of β1, . . . , βn such that conditions 2

and 3 above hold. In turn, this is equivalent to showing that for all l ∈ [n] there exists

a curve interval Cl of βl such that the following two conditions hold:

2’. There exists h ∈ Cs.a.(X) such that Cl ⊆ {h ≥ h′} and {h ≥ g} ⊆ D2.

3’. There exists h ∈ Cs.a.(X) such that {h ≤ f} ⊆ D1 and Cl ⊆ {h ≤ h′}.
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By items (II) and (III) of Proposition 2.4.25 it suffices to prove that for all l ∈ [n]

there exists a curve interval Cl of βl such that

Cl ∩ {g ≤ h′} ⊆ D2, Cl ∩D′
2 ⊆ {h′ ≤ g},

Cl ∩ {h′ ≤ f} ⊆ D1, and D
′
1 ∩ Cl ⊆ {f ≤ h′}. (∗)

Using the same arguments as at the end of the proofs of (II) ⇒ (I) in Lemmas 3.3.10

and 3.3.11, it follows that:

- Items (ii) (a) and (ii) (b) imply that there exists a curve interval I of βl such

that I ∩ {h′ ≤ f} ⊆ D1.

- Items (ii) (c) and (ii) (d) imply that there exists a curve interval J of βl such

that J ∩ {g ≤ h′} ⊆ D2.

- Items (a’) and (b’) imply that exists a curve interval I ′ of βl such that D′
1∩ I ′ ⊆

{f ≤ h′}.

- Items (c’) and (d’) imply that exists a curve interval J ′ of βl such that J ′∩D′
2 ⊆

{h′ ≤ g}.

Since I ′∩J ′∩I∩J ∈ βl, there exists a curve interval Cl of βl such that Cl ⊆ I ′∩J ′∩I∩J ;

such curve interval satisfies (∗), and this concludes the proof.

Lemma 3.3.14. Consider the LX-formula

∃x

(∧∧
i∈I1

ξ1i ⊑ {x ≥ t1i(z)} ∧∧
∧∧
i∈I2

{x ≤ t2i(z)} ⊑ ξ2i ∧∧

∧∧
i∈I3

ξ3i ⊑ {x ≤ t3i(z)} ∧∧
∧∧
i∈I4

{x ≥ t4i(z)} ⊑ ξ4i ∧∧

n∧∧
l=1

Yl = [x]βl

)
, (

♣

)

where

(i) x is a home variable;

(ii) I1, I2, I3, and I4 are disjoint finite index sets;

(iii) all ξki are space variables, and all Yl are germ variables;
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(iv) all tki(z) are L Cs.a.(X)-mod-terms; and

(v) all βl are pairwise distinct half-branches of X.

Then (

♣

) is equivalent modulo MX to the conjunction of all the following formulas:

(a) For all i ∈ I1 and all j ∈ I3 the formula

∃x

(
ξ1i ⊑ {x ≥ t1i(z)} ∧∧ ξ3j ⊑ {x ≤ t3j(z)} ∧∧

n∧∧
l=1

Yl = [x]βl

)
.

(b) For all i ∈ I2 and all j ∈ I3 the formula

∃x

(
{x ≤ t2i(z)} ⊑ ξ2i ∧∧ ξ3j ⊑ {x ≤ t3j(z)} ∧∧

n∧∧
l=1

Yl = [x]βl

)
.

(c) For all i ∈ I1 and all j ∈ I4 the formula

∃x

(
ξ1i ⊑ {x ≥ t1i(z)} ∧∧ {x ≥ t4j(z)} ⊑ ξ4j ∧∧

n∧∧
l=1

Yl = [x]βl

)
.

(d) For all i ∈ I2 and all j ∈ I4 the formula

∃x

(
{x ≤ t2i(z)} ⊑ ξ2i ∧∧ {x ≥ t4j(z)} ⊑ ξ4j ∧∧

n∧∧
l=1

Yl = [x]βl

)
.

Proof. The proof is analogous to that of Lemma 2.4.18; in fact, the statement follows

from Lemma 2.4.18. Clearly (

♣

) implies each of the formulas in items (a) - (d).

Conversely, if hij ∈ Cs.a.(X) (i ∈ I1∪̇I2, j ∈ I3∪̇I4) witness each of the existential

quantifiers of the formulas (a) - (d) then h :=
∨
i∈I1∪̇ I2

∧
i∈I3∪̇I4 hij witnesses the

existential quantifier of the formula (

♣

) by the moreover part of Lemma 2.4.18 and

since

[h]βl =

 ∨
i∈I1∪̇I2

∧
i∈I3∪̇I4

hij


βl

= max
i∈I1∪̇I2

min
i∈I3∪̇I4

[hij]βl = Yl

by Theorem 2.3.2 (III).

Proposition 3.3.15. Let n ∈ N and β1, . . . , βn be pairwise distinct half-branches of

X. Every LX-formula of the form

∃x

(
m1∧∧
i=1

ξ1i = {x ≥ t1i(z)} ∧∧
m2∧∧
i=1

ξ2i = {x ≤ t1i(z)} ∧∧
n∧∧
l=1

Yl = [x]βl

)
(⋆2)

is equivalent modulo M const
X to an L const

X -formula without home quantifiers.
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Proof. Writing ξ1i = {x ≥ t1i(z)} as ξ1i ⊑ {x ≥ t1i(z)} ∧∧ {x ≥ t1i(z)} ⊑ ξ1i and

similarly for ξ1i = {x ≤ t1i(z)}, it is clear that formulas of the form (⋆2) are equivalent

to formulas of the form (

♣

), therefore by Lemma 3.3.14 the formula (⋆2) is equivalent

to a conjunction of formulas of the following form:

(a) ∃x (ξ1i ⊑ {x ≥ t1i(z)} ∧∧ ξ2j ⊑ {x ≤ t2j(z)} ∧∧
∧∧n

l=1 Yl = [x]βl) .

(b) ∃x ({x ≤ t2i(z)} ⊑ ξ2i ∧∧ ξ2j ⊑ {x ≤ t2j(z)} ∧∧
∧∧n

l=1 Yl = [x]βl) .

(c) ∃x (ξ1i ⊑ {x ≥ t1i(z)} ∧∧ {x ≥ t1j(z)} ⊑ ξ1j ∧∧
∧∧n

l=1 Yl = [x]βl) .

(d) ∃x ({x ≤ t2i(z)} ⊑ ξ2i ∧∧ {x ≥ t1j(z)} ⊑ ξ1j ∧∧
∧∧n

l=1 Yl = [x]βl) .

It is now claimed that Lemmas 3.3.10, 3.3.11, 3.3.12, and 3.3.13 respectively imply

that each of the formulas (a), (b), (c), and (d) above are equivalent modulo M const
X

to an L const
X -formula without home quantifiers, from which the proof concludes. To

this end it suffices to argue that each of the conditions within item (II) of each of the

aforementioned lemmas can be expressed as L const
X -formula without home quantifiers.

But this is clear recalling that the formula PrimFβl(ξ) defines the prime filter fβl in LX

(see Lemma 3.3.6), and noting that

F1/m ≤ F2/m ⇐⇒ OR |= ∃Z(Z ≥ 0 ∧∧ m((F2 − F1)− Z))

by definition of the total order on OR/m (see [KS22, Remarks 2.2.6 (1)]).

3.4 Proof of the main theorem (Theorem 3.1.8)

By Lemma 3.2.6 and Lemma 3.2.9 it suffices to show that every LX-formula of the

form

∃x

[
m∧∧
i=1

ξi = {fi · x ≥ ti(z)} ∧∧
n∧∧
j=1

Yj = [x]βj

]
(W2)

is equivalent modulo M const
X to an L const

X -formula without home quantifiers, where

(i) x is a home variable;

(ii) ξ1, . . . , ξm are space variables and Y1, . . . , Yn are germ variables;

(iii) t1(z), . . . , tm(z) are L Cs.a.(X)-mod-terms;
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(iv) fi ∈ Cs.a.(X) are scalar functions such that fi ≥ 0 or fi ≤ 0 for all i ∈ [m]; and

(v) β1, . . . , βn are pairwise distinct half-branches of X.

In what follows, every occurrence of “equivalent” means “equivalent modulo M const
X ”.

Formulas of the form (W2) are clearly equivalent to formulas of the form

∃x

[
d∧∧
i=1

ξi = {fi · x ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {fi · x ≤ ti(z)} ∧∧
n∧∧
j=1

Yj = [x]βj

]
, (W3)

where fi ≥ 0 for all i ∈ [m]. In turn, since {g1 ≤ g2} = {f · g1 ≤ f · g2} and for all

g1, g2, f ∈ Cs.a.(X) with f ≥ 0, by multiplying each inequality fi ·x ≥ ti(z) and fi ·x ≤

ti(z) in (W3) by a suitable scalar, it might be assumed that f1 = · · · = fm =: f ≥ 0.

Therefore it remains to eliminate home quantifiers in formulas of the form

∃x

[
d∧∧
i=1

ξi = {f · x ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {f · x ≤ ti(z)} ∧∧
n∧∧
j=1

Yj = [x]βj

]
, (W4)

where all symbols are as above, and where f ∈ Cs.a.(X) is a fixed non-negative scalar.

The formula (W4) is equivalent to

∃y∃x

[
d∧∧
i=1

ξi = {y ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {y ≤ ti(z)} ∧∧ y = f · x ∧∧
n∧∧
j=1

Yj = [x]βj

]

that is, equivalent to

∃y

[
d∧∧
i=1

ξi = {y ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {y ≤ ti(z)} ∧∧

∃x

(
y = f · x ∧∧

n∧∧
j=1

Yj = [x]βj

)
︸ ︷︷ ︸

(†)

]
. (W5)

Applying Corollary 3.3.8 to the subformula (†), the formula (W5) is equivalent to one

of the form

∃y

[
d∧∧
i=1

ξi = {y ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {y ≤ ti(z)} ∧∧

∃ζ∃Y ′

(
ψ(ζ, Y , Y ′) ∧∧ ζ = {y = 0} ∧∧

n′∧∧
l=1

Y ′
l = [y]β′

l

)
, (W6)

where ψ(ζ, Y , Y ′) is a Boolean combination of space formulas with parameters and

germ formulas with parameters (hence a formula without home quantifiers), and
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β′
1, . . . , β

′
n′ are pairwise distinct half-branches. Since ψ(ζ, Y , Y ′) does not contain the

variable y, the formula (W6) is in turn equivalent to

∃ζ∃Y ′

[
ψ(ζ, Y , Y ′) ∧∧ ∃y

(
d∧∧
i=1

ξi = {y ≥ ti(z)} ∧∧
m∧∧

i=d+1

ξi = {y ≤ ti(z)} ∧∧

ζ = {y = 0} ∧∧
n′∧∧
l=1

Y ′
l = [y]β′

l

)]
. (W7)

Let ζ+ and ζ− be new space variables. Then (W7) is equivalent to

∃ζ∃Y ′∃ζ+ζ−
[
ψ(ζ, Y , Y ′) ∧∧ ζ = ζ+ ⊓ ζ−

(††)



∃y

(
d∧∧
i=1

ξi = {y ≥ ti(z)} ∧∧ ζ+ = {y ≥ 0} ∧∧

m∧∧
i=d+1

ξi = {y ≤ ti(z)} ∧∧ ζ− = {y ≤ 0} ∧∧

n′∧∧
l=1

Y ′
l = [y]β′

l

)]
.

and the subformula (††) is equivalent to an L const
X -formula without home quantifiers

by Proposition 3.3.15, concluding thus the proof.

3.5 Decidability

This section is devoted to harvest the decidability result (Proposition 3.5.3) obtained

from Theorem 3.1.8 under the additional hypothesis that R is a recursive real closed

field (Example 2.1.21). All the key notions of this section (namely recursive language,

recursive structure, and decidable structure) are defined and discussed in Subsection

2.1.2.

Lemma 3.5.1. Let R be a recursive real closed field.

(i) The partially ordered ring Cs.a.(R) is recursive, that is, it is a recursive L poring-

structure, where L poring := L ring(≤).

(ii) The ring of germs OR is a recursive L ring(≤, m)-structure.

(iii) The lattice of zero sets LR of is a recursive L lat(⊤,⊥)-structure.
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Proof. By Proposition 2.1.23, there exists a Gödel numbering ⌜−⌝ of L poring(R) such

that R is decidable, that is, such that the L poring(R)-theory of (R,R) is decidable.

(i). Define α : Cs.a.(R) ↪−→ ω by

α(f) := min{n ∈ ω | n = ⌜φ⌝ where φ ∈ L poring(R)-Fml defines f},

noting that α is a well-defined injective function.

Claim. α(Cs.a.(R)) ⊆ ω is recursive.

Proof of Claim. Pick n ∈ ω arbitrarily. Since L poring(R) is a recursive language,

it can be decided if n = ⌜φ(x, y)⌝ for some φ(x, y) ∈ L poring(R)-Fml with exactly

two free variables. Similarly, since R is decidable it can be decided if an L poring(R)-

formula φ(x, y) in two free variable defines the graph of a continuous function R −→ R,

therefore the set

S := {n ∈ ω | n = ⌜φ⌝ where φ ∈ L poring(R)-Fml

defines the graph of some f ∈ Cs.a.(R)}

is a recursive subset of ω. Using again the fact that R is decidable, it follows that

T := {(n1, n2) ∈ S × S | n1 = ⌜φ1⌝, n2 = ⌜φ2⌝, and φ1, φ2 ∈ L poring(R)-Fml

define the graph of the same f ∈ Cs.a.(R)}

is recursive, and the map µ : S −→ S given by µ(n) := min{n′ ∈ S | (n, n′) ∈ T}

is recursive with recursive image (µ(S) is exactly the set of fixed points of µ). For

each f ∈ Cs.a.(R) let φf be any L poring(R)-formula defining the graph of f ; then

α(f) = µ(⌜φf⌝), therefore α(Cs.a.(R)) = µ(S) and thus the claim follows. Claim.

If φf and φg are L poring(R)-formulas defining f and g (respectively), write φf+g

for the formula ∃y1, y2(z = y1 + y2 ∧∧ φf (x, y1) ∧∧ φg(x, y2)), noting that this defines

the recursive map S2 −→ S given by (⌜φf⌝, ⌜φg⌝) 7→ ⌜φf+g⌝, where S is as in the

proof of the claim above. Define α(f) + α(g) := α(f + g) for all f, g ∈ Cs.a.(R);

then α(f) + α(g) = µ(⌜φf+g⌝) where µ is as defined in the proof of the claim above,

from which it follows that the defined addition is recursive on α(Cs.a.(R)). Similar

arguments show that the other symbols in L poring have recursive interpretations on

α(Cs.a.(R)), from which it follows that Cs.a.(R) is recursive, see Remark 2.1.20 (i).

(ii). Let p0+ := {f ∈ Cs.a.(R) | ∃ε ∈ (0, 1) such that f↾[0,ε]R = 0} and m0 :=

{f ∈ Cs.a.(R) | f(0) = 0}. Using the recursive presentation of Cs.a.(R) given in item
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(i) together with decidability of R it follows that p0+ and m0 are recursive ideals of

Cs.a.(R) (see Example 2.1.22), therefore Cs.a.(R)/p0+ ∼= OR is a recursive partially

ordered ring with recursive ideal m0/p0+ ∼= m (see Example 2.3.36).

(iii). Note first that a proof analogous to the one used in item (i) to show that

addition is recursive on α(Cs.a.(R)) shows that the lattice operations ∨ and ∧ are

recursive on α(Cs.a.(R)); in other words, Cs.a.(R) is a recursive lattice-ordered ring. As

in item (ii), using the recursive presentation of Cs.a.(R) it follows that the equivalence

relation on Cs.a.(R) given by f ∼ g if and only if {f ≥ 0} = {g ≥ 0} is recursive. The

quotient of the recursive structure (Cs.a.(R),≤,∨,∧, 0,−1) by the recursive equivalence

relation ∼ is exactly the L lat(⊤,⊥)-structure LR, therefore the latter structure also

is recursive (see [Mon21, Lemma I.11]).

Lemma 3.5.2. Let R be a recursive real closed field.

(i) The ring of germs OR is a decidable L ring(≤, m)-structure.

(ii) The lattice of zero sets LX is a decidable L lat(⊤,⊥)-structure.

Proof. (i). Combine Proposition 2.1.23, Proposition 2.3.13 (i), and Lemma 3.5.1 (ii).

(ii). The following proof is a refinement of the proof of Proposition 2.4.32 (ii).

By [Tre16, 4.1. (vii) (a)] the lattice LX is parametrically definable in the lattice LR,

therefore it suffices to show that LR is a decidable L lat(⊤,⊥)-structure. Let W (R,≤)

be the weak monadic second-order structure of the linear order (R,≤), that is,W (R,≤)

is the poset of finite subsets of R expanded by all 0-definable (in R) subsets of Rn

(n ∈ N), see [Tre17, Definition 2.1]. By [Tre17, Proposition 3.2. (i)] and its proof,

the recursive lattice LR (Lemma 3.5.1 (iii)) is effectively interpretable in W (R,≤),

therefore it suffices in turn to show that W (R,≤) is a decidable structure. Let S2S be

the infinite binary tree 2<ω with two successor functions σ 7→ σ⌢0 and σ 7→ σ⌢1 (see

[Rab69]); by [Tre17, Remark 3.5 (iii)] and the fact that R is countable, W (R,≤) is

isomorphic to a reduct of W (S2S) (the weak monadic second-order structure of S2S).

By Theorem 1.1 and Corollary 1.9 in [Rab69] (see also Theorem 3.4 and Corollary

3.6 in [Tre17]), the theory of W (S2S) is decidable. Since every finite subset of S2S is

0-definable in S2S, every element of W (S2S) is 0-definable in W (S2S), from which it

follows that W (S2S) is a decidable structure, and thus so is W (R,≤), as required.
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Proposition 3.5.3. Let R be a recursive real closed field.

(i) The language L const
X is recursive and every L const

X -formula is effectively equiva-

lent modulo M const
X to an L const

X -formula of the form (♠).

(ii) The structure M const
X has a decidable L const

X -theory. In particular, the LX-theory

of MX is decidable, and the L ℓ-Cs.a.(X)-mod-theory of the lattice-ordered module

Cs.a.(X) is decidable.

Proof. (i). If φ(z, ζ, Z) is an L const
X -formula, then the proof of Theorem 3.1.8 shows

how to explicitly construct an L const
X -formula without home quantifiers equivalent to

φ(z, ζ, Z) modulo M const
X , therefore this equivalence is effective whenever L const

X is a

recursive language. To prove that L const
X is recursive, note first that the language

(L const
X )↾Σ is exactly the disjoint union of the languages L lat(LX) and L ring(≤, m,OR)

(which are recursive by Remarks 2.1.11 and 2.1.12), therefore by choosing any recursive

presentations of these two latter languages, a standard coding argument (such as using

a recursive bijection ω2 −→ ω as in [Mur99, p. 39]) shows that (L const
X )↾Σ is recursive.

Again by standard coding, any recursive presentation of (L const
X )↾Σ can be extended

to a recursive presentation of L const
X : this is possible since all but finitely many non-

logical symbols in L const
X \ (L const

X )↾Σ are unary, therefore the condition on the arity

maps being partial recursive in Definition 2.1.10 can always be satisfied.

(ii). Since MX and Cs.a.(X) are both reducts of M const
X , it suffices to show that

M const
X has a decidable L const

X -theory T , that is, that there exists a recursive presenta-

tion ⌈−⌉ of L const
X with corresponding Gödel numbering ⌜−⌝ such that ⌜T⌝ is recur-

sive. Since LX and OR are both decidable by Lemma 3.5.2, the proof of (i) shows that

there exists a recursive presentation of L const
X with corresponding Gödel numbering

⌜−⌝ such that ⌜T1⌝ and ⌜T2⌝ are both recursive, where T1 and T2 are the elementary

diagrams of LX and OR, that is, the theories of LX and OR in the languages L1 and

L2 obtained by restricting L const
X to the space and germ sorts, respectively. Let φ be

an L const
X -sentence. By item (i) above, one can effectively find a Boolean combina-

tion ψ of L1-sentences ψ1i and L2-sentences ψ2j such that ⌜φ⌝ ∈ ⌜T⌝ if and only if

⌜ψ⌝ ∈ ⌜T⌝; by choice of ψ, it follows that ⌜ψ⌝ ∈ ⌜T⌝ if and only if the corresponding

Boolean combination of conditions of the form ⌜ψ1i⌝ ∈ ⌜T1⌝ and ⌜ψ2j⌝ ∈ ⌜T2⌝ holds,

and since ⌜T1⌝ and ⌜T2⌝ are recursive, it follows that ⌜φ⌝ ∈ ⌜T⌝ can be decided, as
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required.

3.6 Concluding remarks

The key geometric ingredients in the proof of Theorem 3.1.8 are o-minimality of the

real closed field R, the fact that X is one-dimensional, and the semi-algebraic Tietze

extension theorem. The Tietze extension theorem also holds for continuous definable

functions in o-minimal expansions of real closed fields, see [Dri98, Chapter 8, Corollary

3.10]. In particular, Theorem 3.1.8 also holds for the three-sorted structure analogue

of M const
X obtained by replacing the home sort with the lattice-ordered module (over

itself) of continuous definable functions Cdef(X) on a definable curve X over an o-

minimal expansion R of a real closed field R, and by replacing the space and germ

sorts by the corresponding lattice of zero sets and ring of germs at a half-branch,

respectively. The ring of germs of Cdef(X) at a half-branch of X is a Th(R)-convex

subring of R in the sense of [DL95], where Th(R) is the theory of R in the language of

R, therefore its theory is model complete whenever Th(R) is. In particular, the proof

of decidability given in Section 3.5 shows that decidability in the continuous definable

case also follows under the extra hypotheses that R is a decidable structure (hence

also recursive) with model complete theory Th(R).

Continuing on decidability issues, a statement stronger than that given in Proposi-

tion 3.5.3 (ii) would be that if R is a recursive real closed field, then MX is a decidable

LX-structure, that is, that the elementary diagram of MX is a decidable theory. The

proof of such a statement would require a careful recursive presentation of the lan-

guage LX expanded by constants for all elements of the three sorts in LX , as well as

a proof that with such recursive presentation the zero set map Cs.a.(X) −↠ LX and

the germ maps [−]β : Cs.a.(X) −↠ OR are recursive.

To conclude, it will be now pointed where the main problem arises in trying to

carry the proof of Theorem 3.1.8 as outlined in Subsection 3.1.2 to the structure M ring
X

obtained by replacing the module scalar functions on the home sort of MX (or M const
X )

by the full (binary) multiplication, so that the home sort becomes an L ℓ-ring-structure

in M ring
X , where L ℓ-ring := {+,−, ·, 0, 1,≤,∨,∧}.

Using [DM95, Fact F6] in place of Proposition 3.2.2, one can easily show that every
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formula without home quantifiers is equivalent modulo M ring
X to a formula of the form

(♠), where in this case the terms ti(z) and sj(z) are L ℓ-ring-terms. The main issue

comes in the elimination of home quantifiers in formulas of the form (⋆1). As shown

in Lemmas 3.3.1 and 3.3.2, expressing that f ∈ Cs.a.(X) divides g ∈ Cs.a.(X) in the

germ sort depends on all the half-branches at the boundary points of {f = 0}. In

particular, if f is not fixed (as it would be the case in M ring
X ), then these half-branches

vary both in number and in the points at which they are centred as f varies, and

thus depending on what f is, the number of conjuncts of germ formulas in item (II)

of Lemma 3.3.2 varies.



Chapter 4

Local Real Closed SV-Rings of

Finite Rank

Recall the fix the following terminology and notation for this chapter:

(i) Let {Ai}i∈I be a non-empty set of rings.

(i) For all j ∈ I, let πj :
∏

i∈I Ai −↠ Aj be the projection map.

(ii) A ring A is a subdirect product of {Ai}i∈I if A is a subring of
∏

i∈I Ai and

πi↾A : A −→ Ai is surjective for all i ∈ I; if A is a subdirect product of

{Ai}i∈I , define pi := πi↾A for all i ∈ I.

(ii) If A is a ring, then Specmin(A) is its set of minimal prime ideals.

(iii) If A and B are local rings with respective unique maximal ideals mA and mB,

then an injective ring homomorphism f : A ↪−→ B is local if f−1(mB) = mA.

4.1 Introduction

The present chapter studies n-fold fibre products of non-trivial real closed valuation

rings along surjective ring homomorphisms onto a fixed domain, where n ∈ N≥2. This

“bottom-up” definition of this class of rings has an equivalent “top-down” descrip-

tion, namely, these rings are exactly local real closed SV-rings of finite rank with one

branching ideal.

116
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Survaluation rings (SV-rings for short) were first introduced in [HW92] in con-

nection to rings C(X) of continuous real-valued functions on a completely regular

topological space X; in the aforementioned paper, the authors call the ring C(X) an

SV-ring if C(X)/p is a valuation ring for every prime ideal p of C(X), and X an

SV-space if C(X) is an SV-ring. A canonical partial order on the rings C(X) is de-

fined by setting f ≤ g if and only if f(x) ≤ g(x) for all x ∈ X; this partial order is

a lattice-order which gives C(X) the structure of an f -ring ([GJ60], [BKW77]), and

this motivated the study of SV-rings within the class of f -rings in [HL93] (see also

[Hen+94], [Lar11], as well as the survey [Lar10]). SV-rings can also be studied without

the presence of a partial order: Schwartz defines in [Sch10b] a commutative and unital

ring A to be an SV-ring if A/p is a valuation ring for all prime ideals p of A, and this

is what is meant here by an SV-ring (Definition 4.2.1).

The article [Sch10b] contains a systematic study of SV-rings and it is the main

reference on SV-rings for the present work. [Sch10b] also opened up the door for the

model-theoretic study of SV-rings by proving the first results on axiomatizability (in

the sense of model theory) of SV-rings in the language of rings L := {+,−, ·, 0, 1}.

In particular, it is shown in [Sch10b, Section 3] that the question of whether a class

of SV-rings is elementary or not is tightly connected with the rank of the rings in this

class; the rank of a prime ideal p in a ring A is defined as the number (which is either

a natural number or ∞) of minimal prime ideals q of A such that q ⊆ p, and the

rank of the ring A is the supremum of the ranks of its prime ideals (Definition 4.2.6),

therefore a local ring has finite rank if and only if it has finitely many minimal prime

ideals.

The rings C(X) are particular examples of real closed rings in the sense of Schwartz,

see Section 2.3, as well as [Sch89], [Sch86], [Sch97], [SM99, Section 12], and [Tre07].

The terminology “real closed ring” was first coined by Cherlin and Dickmann in [CD86]

and [CD83], and some results in the literature about real closed rings refer to real

closed rings in the sense of Cherlin and Dickmann (e.g. [MMS00]); in this chapter a

real closed ring is always meant to be a real closed ring in the sense of Schwartz. Real

closed rings in the sense of Cherlin and Dickmann are exactly real closed rings which

are also valuation rings, that is, they are real closed valuation rings, see Subsection

2.3.1 and [Sch09]). Equivalently, these are local real closed SV-rings of rank 1, see
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Corollary 4.2.8.

Non-trivial real closed valuation rings (i.e., those which are not fields) are exactly

proper convex subrings of real closed fields, and this close relationship between these

two classes of rings entails that non-trivial real closed valuation rings have many of the

good model-theoretic properties of real closed fields ([CD83], [Bec83]). In particular,

the class of non-trivial real closed valuation rings is elementary in the language of

rings L , and its theory is complete, decidable, and NIP ([CD83], [MMS00]). Here

NIP stands for “not independence property”, and it is a combinatorial property of

first-order theories that can be described as certain families of definable sets having

finite VC-dimension, see [Sim15]. It follows that the class of local real closed SV-rings

of rank 1 splits into the classes of models of two complete, decidable, and NIP L -

theories, namely, the L -theory RCF of real closed fields and the L -theory RCVR of

non-trivial real closed valuation rings.

Local real closed SV-rings of rank n ∈ N≥2 are exactly those rings obtained by

taking iterated fibre products of finitely many non-trivial real closed valuation rings

along surjective ring homomorphisms onto domains, see Theorem 4.4.2 for a precise

formulation of this statement. Moreover, the class of local real closed SV-rings of rank

n ∈ N≥2 is elementary in the language L ; this follows from [Sch10b, Proposition 2.2

and Corollary 3.16], but an equivalent axiomatization Tn for this class of rings is given

in Definition 4.5.3.

A very particular class of local real closed SV-rings of rank n ∈ N≥2 is the one

whose rings have exactly one branching ideal (Definition 4.3.1 and Lemma 4.4.7): a

prime ideal q in a ring A is defined to be a branching ideal if there exist distinct prime

ideals p1, p2 ⊆ A such that p1, p2 ⊊ q and q = p1 + p2. Local real closed rings of rank

n ∈ N≥2 have at least one branching ideal and at most n−1 branching ideals (Remarks

4.3.2 (ii) and 4.3.7), so those with exactly one branching ideal are the simplest rings

in this class; moreover, there exists an L -sentence φbr,n (Definition 4.5.4) such that

for all local real closed rings A of rank n, A |= φbr,n if and only if A has exactly one

branching ideal (Lemma 4.5.5).

If A is a local real closed ring of rank n with unique maximal ideal mA and with a

unique branching ideal bA, then either bA = mA or bA ⊊ mA, and this is an elementary

property of the ring A (Proposition 4.3.5). In particular, the elementary class of
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local real closed SV-rings of rank n with exactly one branching ideal splits into two

elementary classes of rings, namely, local real closed SV-rings of rank n with exactly

one branching ideal bA such that bA = mA (called for brevity rings of type (n, 1), see

Definition 4.4.8), and local real closed SV-rings of rank n with exactly one branching

ideal bA such that bA ⊊ mA (called for brevity rings of type (n, 2)); geometric examples

of rings of type (n, 1) are rings of germs of continuous semi-algebraic functions X −→

R at a point x ∈ X, where X ⊆ Rm is a semi-algebraic curve over a real closed

field R (Example 4.4.9). The main goal of this chapter is to provide a first model-

theoretic analysis of the theories Tn,1 and Tn,2 or rings of type (n, 1) and of type (n, 2),

respectively. Amongst other things, it is shown in Section 4.5 that Tn,1 and Tn,2 are

complete, decidable, and NIP.

Much of the work towards proving the model-theoretic results in Section 4.5 rests

on having good algebraic descriptions of local real closed SV-rings of finite rank and

of their branching ideals, and this is the content of Sections 4.3 and 4.4. In particular,

Theorem 4.4.2 is a structure theorem for local real closed SV-rings of finite rank

which is deduced from a structure theorem for reduced local SV-rings rings of finite

rank (Theorem 4.2.22), and Proposition 4.3.5 gives various equivalent conditions for

the maximal ideal in a local real closed ring of finite rank to be a branching ideal;

Proposition 4.3.5 then yields several equivalent characterizations of branching ideals

in rings of this latter class (Remark 4.3.6).

4.1.1 Structure of the chapter

Section 4.2 starts by collecting the relevant material on SV-rings and on ranks of rings;

in particular, Lemma 4.2.9 (III) and Corollary 4.2.11 describe minimal prime ideals in

reduced local rings of finite rank as annihilator ideals of elements, and this is crucially

used in the model-theoretic analysis of local real closed SV-rings of finite rank. The

remaining part of Section 4.2 is devoted to prove a structure theorem for reduced local

SV-rings of finite rank (Theorem 4.2.22), where the key algebraic result being used in

the proof is Goursat’s lemma for rings (Lemma 4.2.16).

In Section 4.3 branching ideals in rings are defined and studied in local real closed

rings of finite rank, the main result here being Proposition 4.3.5, which gives equivalent

characterizations for the maximal ideal in these rings to be a branching ideal. Section



CHAPTER 4. LOCAL REAL CLOSED SV-RINGS OF FINITE RANK 120

4.3 can be read independently of Section 4.2.

In Section 4.4 the real closed version of Theorem 4.2.22 is proved (Theorem 4.4.2),

and this is then used to formally define the main objects of this chapter, namely

rings of type (n, 1) and of type (n, 2) (Lemma 4.4.7 and Definition 4.4.8); the section

concludes by proving some embedding lemmas of such rings which are used in the

model completeness proofs of Section 4.5.

All the model theory of the chapter is contained in Sections 4.5 and 4.6. Section 4.5

starts by defining all the relevant first-order theories, and this is followed by the model

completeness results (Theorems 4.5.15 and 4.5.21) from which much of the remaining

statements in Section 4.5 stem from. Section 4.6 starts by explaining some difficulties

in the model-theoretic study of arbitrary local real closed SV-rings of finite rank. In

Subsection 4.6.2 an approach to overcome these difficulties is proposed by introducing

the notion of the branching spectrum of a local real closed ring of finite rank and

connecting it with the model theory of real closed rings with a radical relation as

developed in [PS]. In particular, Corollary 4.6.8 shows that elementary equivalent

local real closed rings of finite rank have poset-isomorphic branching spectra, and this

yields a candidate for an elementary classification of all local real closed SV-rings of

finite rank (Conjecture 4.6.9).

4.2 SV-rings

4.2.1 Preliminaries on SV-rings

Definition 4.2.1. A ring A is an SV-ring if A/p is a valuation ring for all p ∈ Spec(A).

In particular, by Theorem 2.3.2 (II) (i) a real closed SV-ring is a real closed ring A

such that A/p is a real closed valuation ring for all p ∈ Spec(A). Residue domains of

valuation rings are valuation rings, therefore valuation rings are the first examples of

SV-rings. Rings of Krull dimension 0 (i.e., rings in which every prime ideal is maximal)

are clearly also SV-rings; for more examples of SV-rings see Proposition 4.2.4 and the

subsections below. The next theorem collects some known equivalent characterizations

of SV-rings:

Theorem 4.2.2. Let A be a ring. The following are equivalent:
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(i) A is an SV-ring.

(ii) A/p is a valuation ring for all p ∈ Specmin(A).

(iii) Ared := A/Nil(A) is an SV-ring, where Nil(A) is the nilradical of A.

(iv) Spec(A) is a normal space1 and the localization Am is an SV-ring for every

maximal ideal m of A.

(v) For each a, b ∈ Ared there exists a polynomial P ∈ Ared[X, Y ] of the form

P (X, Y ) :=
∏r

i=1(X − ci · Y ) such that P (a, b) · P (b, a) = 0.

Moreover, if A satisfies any of the conditions (i) - (vi) above, then Ared is isomorphic

to a subdirect product of valuation rings.

Proof. The equivalence of (i) - (iii) is clear, the equivalence of (i) and (iv) is Proposition

1.5 in [Sch10b], and the equivalence of (i) and (v) follows from the equivalence of (i) and

(iii) together with Theorem 3.4 in [Sch10b]. To conclude, suppose that A is an SV-ring

and let B := Ared; B is a reduced SV-ring by the implication (i) ⇒ (iii), therefore the

canonical map B −→
∏

p∈Spec(B)B/p is injective and its image is a subdirect product

of the valuation rings {B/p}p∈Spec(B).

It follows from the equivalences (i) ⇔ (iii) ⇔ (iv) in Theorem 4.2.2 that in the

study of SV-rings, the class of reduced local SV-rings is at the forefront.

Remark 4.2.3. (i) Rings with normal Zariski spectrum are abundant in the realm of

real algebra. In particular, the Zariski spectrum of a real closed ring is normal

by Theorem 2.3.2 (II) (iii), and thus for such class of rings the SV property is a

“local property” by the equivalence (i) ⇔ (iv) in Theorem 4.2.2.

(ii) In general, subdirect products of valuation rings are not SV-rings: If X is not an

SV-space (see [HW92]), then the ring C(X) of continuous real-valued functions

on X is a subdirect product of valuation rings which is not an SV-ring. On

the other hand, every subdirect product2 of finitely many valuation rings is an

SV-ring (see Subsection 4.2.3 and Remark 4.2.23).

1Equivalently, A is a Gelfand ring ; see [Joh82, p. 199] and [ST10, Theorem 4.3].
2The model theory of subdirect products of structures has been investigated via a 2-sorted set-up

in [Wei75]; see also [Wei78].
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One way to obtain examples of SV-rings to find ring-theoretic constructions which

preserve the SV property; the next proposition summarizes the main such construc-

tions:

Proposition 4.2.4. The class of SV-rings is closed under formation of residue rings

and localizations by multiplicative subsets. Moreover:

(i) A finite direct product of rings is an SV-ring if and only if each factor is an

SV-ring.

(ii) Direct limits of SV-rings are SV-rings.

(iii) Direct products of valuation rings are SV-rings.

(iv) If A and B are SV-rings and f : A −↠ C and g : B −↠ C are surjective ring

homomorphisms onto a ring C, then the fibre product A×C B is an SV-ring.

Proof. That the class of SV-rings is closed under the formation of residue rings and

localizations by multiplicative subsets is clear, and item (i) follows from the charac-

terization of prime ideals in a finite direct product of rings; for the proof of items (ii)

- (iv) see Example 1.2 in [Sch10b].

In particular, if V1 and V2 are non-trivial valuation rings with isomorphic residue

field k , then by Proposition 4.2.4 (iv) the fibre product V1×kV2 is an SV-ring; V1×kV2

should be thought as constructed by “gluing” the valuation rings V1 and V2 in a

particular way, and this construction of SV-rings via fibre products is a central theme

of this chapter. The next example, which generalizes Proposition 4.2.4 (iii), shows

how to construct some SV-rings by gluing valuations rings via a sheaf construction:

Example 4.2.5. LetA be a Boolean product of valuation rings in the language L (div),

where L (div) is the language of rings L := {+,−, ·, 0, 1} together with a binary

predicate div interpreted as divisibility; i.e., there exists a Boolean space X and a

Hausdorff sheaf OX of valuation rings on X (that is, the stalk OX,x is a valuation ring

for each x ∈ X) such that A is the L (div)-structure Γ(X,OX) of global continuous

sections, see [BW79] and [Gui01, Section 2]. It will be shown that A is an SV-ring; to

this end, set AU := Γ(U,OX) for each U ⊆ X open, Ax := OX,x for each x ∈ X, and

write a↾U for the image of a ∈ A in AU and a(x) for the image of a ∈ A in Ax. Pick
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a, b ∈ A and note that X = U ∪̇ V ∪̇ W , where U := Jdiv(a, b)K ∩ (X \ Jdiv(b, a)K),

V := Jdiv(b, a)K ∩ (X \ Jdiv(a, b)K), W := Jdiv(a, b)K ∩ Jdiv(b, a)K, and Jdiv(a, b)K :=

{x ∈ X | Ax |= div(a(x), b(x))}; since A is a Boolean product in the language L (div),

U, V,W ⊆ X are clopen, and a standard compactness argument (e.g. as in the proof

of [BW79, Lemma 1.1]) yields elements d ∈ AU , e ∈ AV , and f ∈ AW such that

a↾Ud = b↾U , b↾V e = a↾V , and b↾Wf = a↾W , hence c := d ∪ e ∪ f ∈ A is an element such

that (a − cb)(b − ca) = 0, therefore A is an SV-ring by the implication (v) ⇒ (i) in

Theorem 4.2.2.

4.2.2 The rank of a ring

One way of classifying the complexity of SV-rings is via the following notion of rank

of a ring (this definition can be found in [Sch10b, Section 2]):

Definition 4.2.6. Let A be a ring and ∞ be a symbol such that n <∞ for all n ∈ N.

(i) For p ∈ Spec(A), define rk(A, p) ∈ N to be the number of minimal prime ideals

q of A such that q ⊆ p if this number is finite, and rk(A, p) = ∞ otherwise.

(ii) The rank of A is rk(A) := sup{rk(A, p) | p ∈ Spec(A)} ∈ N ∪ {∞}.

The ring A is of finite rank if rk(A) ̸= ∞.

It has been already noted that reduced local SV-rings are in the forefront of the

study of SV-rings; amongst reduced local SV-rings, those of rank 1 are exactly the

simplest SV-rings, namely valuation rings:

Lemma 4.2.7. Let A be a ring. The following are equivalent:

(i) A is a reduced local SV-ring of rank 1.

(ii) A is a valuation ring.

Proof. The implication (ii) ⇒ (i) is trivial. Conversely, if item (i) holds, then A

being local of rank 1 implies that A has exactly one minimal prime ideal q, therefore

Nil(A) =
⋂

p∈Spec(A) p = q is a prime ideal of A; since A is reduced, q = (0), and since

A is an SV-ring, A/q = A is a valuation ring, as required.
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Corollary 4.2.8. A ring A is a local real closed SV-ring of rank 1 if and only if it is

a real closed valuation ring.

Proof. Immediate by 4.2.7.

The same proof as in Lemma 4.2.7 shows that local domains are exactly the reduced

local rings of rank 1; in particular, if a reduced local ring is not a domain, then its rank

is at least 2, so the rank of a reduced local ring is related with its zero divisors. The

next lemmas clarify the relationship between the rank of a reduced local ring and its

zero divisors (cf. [Sch10b, Proposition 2.1] and [Lar10, Theorem 3.6]); Lemma 4.2.9

(III) and Corollary 4.2.11 will be of particular importance in Section 4.5.

Lemma 4.2.9. Let A be a reduced ring and set Specmin(A) := {pi | i ∈ I}.

(I) If a ∈ A is a non-zero zero divisor, then S := {i ∈ I | a /∈ pi} is a non-empty

proper subset of I such that
⋂
i∈S pi = Ann(a).

(II) Let m ∈ N≥2. If a1, . . . , am ∈ A are non-zero and pairwise orthogonal3, then

Sj := {i ∈ I | aj /∈ pi} (j ∈ [m]) are pairwise disjoint non-empty proper subsets

of I such that
⋂
i∈Sj

pi = Ann(aj) for all j ∈ [m].

(III) Suppose that A is local.

(i) rk(A) = sup{m ∈ N | ∃a1, . . . , am ∈ A non-zero and pairwise orthogonal}.

(ii) If rk(A) = |I| = n ∈ N≥2, then for all a1, . . . , an ∈ A non-zero and pairwise

orthogonal there exists a bijection σ : [n] −→ [n] such that pi = Ann(aσ(i))

for all i ∈ [n].

Proof. (I). Since A is reduced and a ∈ A is a non-zero zero divisor, a /∈
⋂
i∈I pi = (0)

and a ∈
⋃
i∈I pi, therefore S := {i ∈ I | a /∈ pi} is a non-empty proper subset of I;

note in particular that a ∈ pi for all i ∈ I \S. The inclusion Ann(a) ⊆
⋂
i∈S pi is clear;

conversely, if b ∈
⋂
i∈S pi, then ba ∈ (

⋂
i∈S pi) ∩ (

⋂
i∈I\S pi) = (0), hence b ∈ Ann(a).

(II). Each aj is a non-zero zero divisor, therefore by (I) it remains to show that

the sets S1, . . . , Sm defined in (II) are pairwise disjoint. Assume for contradiction that

there exist j, j′ ∈ [m] with j ̸= j′ such that there exists i ∈ Sj ∩ Sj′ , i.e., aj, aj′ /∈ pi;

since j ̸= j′, ajaj′ = 0 ∈ pi, giving the required contradiction.

3Two elements a, b ∈ A in a ring A are orthogonal if ab = 0.
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(III) (i). Note first that rk(A) = |Specmin(A)| = |I| ∈ N ∪ {∞} by assumption on

A. Define κ := sup{m ∈ N | ∃a1, . . . , am ∈ A non-zero and pairwise orthogonal} ∈

N∪{∞}; if κ /∈ N, then rk(A) /∈ N by (II), therefore rk(A) = κ, and if κ = 1, then A is

a domain, therefore rk(A) = 1 = κ. Suppose now that κ = n ∈ N≥2; let a1, . . . , an ∈ A

be non-zero pairwise orthogonal elements witnessing κ = n, and define the subsets

Sj ⊆ I as in item (II); by (II), n ≤ rk(A), so assume for contradiction that n < rk(A).

Case 1. There exists i ∈ I \(S1 ∪̇ . . . ∪̇ Sn). In this case pi is a minimal prime ideal

such that a1, . . . , an ∈ pi; since pi is a minimal prime ideal, by [Mat83, Proposition 1.2

(1)] there exists bj ∈ A\pi such that ajbj = 0 for each j ∈ [n], therefore b := b1 · . . . · bn
is a non-zero element which is orthogonal to each ai, a contradiction to κ = n.

Case 2. I = S1 ∪̇ . . . ∪̇ Sn and there exists j ∈ [n] such that |Sj| ≥ 2. Assume

without loss of generality that |S1| ≥ 2 and suppose that pi1 and pi2 are distinct

minimal prime ideals such that i1, i2 ∈ S1, so that a1 /∈ pi1 and a1 /∈ pi2 . Pick

b ∈ pi1 \ pi2 ; since pi1 is a minimal prime ideal, by [Mat83, Proposition 1.2 (1)] there

exists c ∈ A \ pi1 such that bc = 0, therefore a1b, a1c, a2, . . . , an are non-zero pairwise

orthogonal elements of A, a contradiction to κ = n.

(III) (ii). Combine items (II) and (III) (i).

Remark 4.2.10. Let A be a reduced local ring of rank n ∈ N≥2 and write Specmin(A) :=

{pi | i ∈ [n]}; the canonical mapA −→
∏

i∈[n]A/pi is an embedding, and it follows from

this that (up to re-labelling) any n non-zero pairwise orthogonal elements a1 . . . , an ∈ A

satisfy ai ∈
⋂
j∈[n]\{i} pj \ pi, so that pi = Ann(ai) for all i ∈ [n].

Corollary 4.2.11. Let A and B be reduced local rings of rank n ∈ N≥2 such that

A ⊆ B. If a1, . . . , an ∈ A are non-zero and pairwise orthogonal, then

Specmin(A) = {AnnA(ai) | i ∈ [n]} and Specmin(B) = {AnnB(ai) | i ∈ [n]}.

Proof. Clear by Lemma 4.2.9 (III) (ii).

Remark 4.2.12. Let A and B be reduced local rings of rank n ∈ N≥2 such that A ⊆ B.

Write Specmin(A) = {pA,i | i ∈ [n]} and Specmin(B) = {pB,i | i ∈ [n]}, and assume

without loss of generality that pB,i ∩ A = pA,i for all i ∈ [n] (Corollary 4.2.11). The

embedding A ⊆ B induces embeddings A/pA,i ⊆ B/pB,i for all i ∈ [n], and A ⊆ B

is a local embedding if and only if A/pA,i ⊆ B/pB,i is a local embedding for all
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(equivalently, for some) i ∈ [n]: this follows from the fact that the residue field of A is

isomorphic to the residue field of A/pA,i for all i ∈ [n], and similarly for B.

Lemma 4.2.13. Let n ∈ N≥2, A1, . . . , An be domains, and A be a subdirect product

of {A1, . . . , An}.

(I) For every p ∈ Specmin(A) there exists i ∈ [n] such that p = ker(pi) (see the

beginning of this chapter for the definition of pi); in particular, rk(A) ≤ n.

(II) Suppose that A is local, and for each S ⊆ [n] let πS :
∏n

i=1Ai −↠
∏

i∈S Ai be the

canonical projection. The following are equivalent:

(i) rk(A) = n.

(ii) For all S ⊊ [n], the map pS := (πS)↾A : A −→
∏

i∈S Ai is not injective.

(iii) ker(pi) and ker(pj) are incomparable under subset inclusion for all i, j ∈ [n]

with i ̸= j.

Moreover, if any of the conditions (i) - (iii) holds, then Specmin(A) = {ker(pi) |

i ∈ [n]}.

Proof. (I). Let p ∈ Specmin(A). Then ker(p1) · . . . · ker(pn) = (0) ⊆ p, therefore there

exists i ∈ [n] such that ker(pi) ⊆ p; but ker(pi) ∈ Spec(A), hence ker(pi) = p by

minimality of p.

(II). Straightforward using (I).

4.2.3 Structure theorem for reduced local SV-rings of finite

rank

The main statement in this subsection is Theorem 4.2.22, which is just a refined

formulation of the observation made in [Sch10b, Remark 3.2] that every reduced local

SV-ring of finite rank can be constructed from valuation rings using iterated fibre

products.

Lemma 4.2.14. Let A be a ring and I, J ⊆ A be ideals. The ring homomorphism

f : A −→ A/I × A/J given by f(a) := (a/I, a/J) has image A
I
× A

I+J

A
J
; in particular,

A
I∩J

∼= A
I
× A

I+J

A
J
.
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Proof. Clearly im(f) ⊆ A
I
× A

I+J

A
J
; moreover, if (a/I, b/J) ∈ A

I
× A

I+J

A
J
, then there

exist c ∈ I and d ∈ J such that a − b = c + d, hence a − c = b + d and thus

(a/I, b/J) = f(a − c) = f(b − d), therefore im(f) = A
I
× A

I+J

A
J
. The last assertion

follows by noting that ker(f) = I ∩ J .

Corollary 4.2.15. Let n ∈ N≥2. If I1, . . . , In ⊆ A are ideals, then

A⋂n
i=1 Ii

∼=
(((

A

I1
× A

G2

A

I2

)
× A

G3

A

I3

)
· · · × A

Gn−1

A

In−1

)
× A

Gn

A

In
,

where Gj := (
⋂j−1
i=1 Ii) + Ij for all j ∈ {2, . . . , n}.

Proof. Straightforward by induction using Lemma 4.2.14.

Lemma 4.2.16 (Goursat’s lemma for rings). Let A1 and A2 be rings and A ⊆ A1×A2

be a subring. The following are equivalent:

(i) A is a subdirect product of {A1, A2}.

(ii) There exist ideals I ⊆ A1, J ⊆ A2, and an isomorphism f : A1/I
∼=−→ A2/J such

that A = A1 ×A2/J A2.

(iii) There exist ideals H1, H2 ⊆ A such that H1 ∩ H2 = (0), together with isomor-

phisms gi : Ai
∼=−→ A/Hi (i ∈ {1, 2}) yielding an isomorphism g : A1 × A2

∼=−→

A/H1 × A/H2 such that g↾A(a) = (a/H1, a/H2) for all a ∈ A, and g↾A is an

isomorphism A
∼=−→ A

H1
× A

H1⊕H2

A
H2

.

Proof. (i) ⇒ (ii). The following proof can be found in [Lar11, Lemma 2]; for future

reference it is included here. Let I := p1(ker(p2)) and J := p2(ker(p1)), noting that

since p1 and p2 are surjective, I ⊆ A2 and J ⊆ A2 are ideals (see the beginning of this

chapter for the definition of pi).

Claim. The assignment f : A1/I −→ A2/J given by

a1/I 7→ a2/J
def⇐⇒ (a1, a2) ∈ A

for all (a1, a2) ∈ A1 × A2 is a well-defined ring isomorphism.

Proof of Claim. To see that f is indeed a function, pick a1, b1 ∈ A1 and a2, b2 ∈ A2

such that a1 − b1 ∈ I and (a1, a2), (b1, b2) ∈ A; then (a1 − b1, a2 − b2) ∈ A, and since

a1 − b1 ∈ I = p1(ker(p2)), (a1 − b1, 0) ∈ A, hence 0/J = f((a1 − b1)/I) = (a2 − b2)/J ,
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from which a2/J = b2/J follows. That f is a ring homomorphism follows from A

being a subring of A1 × A2, and since A is a subdirect product of {A1, A2} it follows

that f is surjective, so it remains to show that f is injective. Pick a1, b1 ∈ A1 and

suppose that f(a1/I) = f(b1/I), hence there exist a2, b2 ∈ A2 with a2 − b2 ∈ J and

(a1, a2), (b1, b2) ∈ A; then (a1 − b1, 0) = (a1, a2) − (b1, b2) − (0, a2 − b2) ∈ A, yielding

a1/I = b1/I. □Claim

Let qI : A1 −↠ A1/I and qJ : A2 −↠ A2/J be the projection maps. By the claim

above, (f ◦ qI) ◦ p1 = qJ ◦ p2, so to show that A = A1 ×A2/J A2, it suffices to show that

A verifies the universal property of the fibre product A1 ×A2/J A2. Let fi : C −→ Ai

be ring homomorphisms such that (f ◦ qI) ◦ f1 = qJ ◦ f2, and define h : C −→ A1 ×A2

by h(c) := (f1(c), f2(c)); since f(f1(c)/I) = f2(c)/J by choice of f1 and f2, it follows

by definition of f that (f1(c), f2(c)) ∈ A for all c ∈ C, so h(C) ⊆ A and thus the

corestriction of h to A verifies the universal property of A1 ×A2/J A2.

(ii) ⇒ (iii). Let qI : A1 −↠ A1/I and qJ : A2 −→ A2/J be the projection maps.

Since f ◦ qI : A1 −↠ A2/J and qJ : A2 −↠ A2/J are surjective and A = A1 ×A2/J A2,

pi := πi↾A : A −↠ Ai (i ∈ {1, 2}) are surjective ring homomorphisms such that

(f ◦ qI) ◦ p1 = qJ ◦ p2. Set Hi := ker(pi) for i ∈ {1, 2}; then H1, H2 ⊆ A are

ideals of A such that H1 ∩ H2 = (0) which induce isomorphisms gi : Ai
∼=−→ A/Hi

(i ∈ {1, 2}) yielding an isomorphism g : A1×A2

∼=−→ A/H1×A/H2 given by (a1, a2) 7→

(g1(a1), g2(a2)). If a := (a1, a2) ∈ A ⊆ A1×A2, then g(a) = (a/H1, a/H2) by definition

of g, therefore g↾A : A −→ A/H1×A/H2 is an isomorphism onto its image A
H1

× A
H1⊕H2

A
H2

by Lemma 4.2.14.

(iii) ⇒ (i). Let i ∈ {1, 2}. By (iii), the following diagram

A
H1

× A
H1⊕H2

A
H2

A

A
H1

× A
H2

A1 × A2

A/Hi

Ai

g↾A

⊆

g

⊆

gi

commutes; since all the vertical arrows are isomorphisms, the composite top mor-

phism is surjective if and only if the composite bottom morphism is surjective; since

A
H1

× A
H1⊕H2

A
H2

is a subdirect product of {A/H1, A/H2}, (i) follows.
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Remark 4.2.17. Let A1 and A2 be rings and A ⊆ A1 ×A2 be a subring satisfying any

of the items (i) - (iii) in Lemma 4.2.16; then A
H1⊕H2

∼= A1/I (∼= A2/J), where I ⊆ A1

and J ⊆ A2 are ideals as in item (ii) in Lemma 4.2.16, and H1, H2 ⊆ A are ideals

as in item (iii) in Lemma 4.2.16. Indeed, by the proofs of the implications (i) ⇒ (ii)

and (ii) ⇒ (iii) in Lemma 4.2.16, I = p1(ker(p2)) and Hi = ker(pi) for i ∈ {1, 2},

hence I = p1(H2); it is easy to check from this that a
H1⊕H2

7→ p1(a)/I is a well-defined

isomorphism A
H1⊕H2

−→ A1/I.

Corollary 4.2.18. Let A1 and A2 be local rings and A ⊆ A1 × A2 be a subring. The

following are equivalent:

(i) A is a local ring and a subdirect product of {A1, A2}.

(ii) There exist ideals I ⊊ A1 and J ⊊ A2 and a ring isomorphism f : A1/I
∼=−→ A2/J

such that A = A1 ×A2/J A2.

(iii) There exist ideals H1, H2 ⊆ A such that H1∩H2 = (0) and H1⊕H2 ̸= A, together

with isomorphisms gi : Ai
∼=−→ A/Hi (i ∈ {1, 2}) yielding an isomorphism g :

A1 × A2

∼=−→ A/H1 × A/H2 such that g↾A(a) = (a/H1, a/H2) for all a ∈ A, and

g↾A is an isomorphism A
∼=−→ A

H1
× A

H1⊕H2

A
H2

.

Moreover, if any of the items (i) - (iii) holds, then one may choose:

(a) I := p1(ker(p2)) and J := p2(ker(p1)) to be the ideals of A1 and A2 in item (ii)

(respectively) and f : A1/I −→ A2/J to be the map a1/I 7→ a2/J ; and

(b) Hi := ker(pi) to be the ideals of A (i ∈ {1, 2}) in item (iii), and gi : Ai −→ A/Hi

to be the corresponding induced isomorphisms.

Proof. The equivalence of items (i) - (iii) is immediate from Lemma 4.2.16 noting that

if B and C are local rings and g : B −↠ D and h : C −↠ D are surjective ring

homomorphisms, then B×DC is a local ring if and only if D is not the zero ring. The

last statement in the lemma follows from the proofs of the implications (i) ⇒ (ii) and

(ii) ⇒ (iii) in Lemma 4.2.16.

Notation 4.2.19. Let n ∈ N≥2 and suppose that A1, . . . , An are rings. For each

k ∈ [n] and j ∈ [k], let πkj :
∏k

i=1Ai −↠
∏j

i=1Ai be the projection map onto the first

j factors; in particular, πn1 = π1 and πnn is the identity map.
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Proposition 4.2.20. Let n ∈ N≥2, A1, . . . , An be local rings, and A ⊆
∏n

i=1Ai be a

subring. The following are equivalent:

(i) A is a local ring and a subdirect product of {A1, . . . , An}.

(ii) πn1 (A) = A1 (see Notation 4.2.19) and for all j ∈ [n − 1] there exist ideals

Ij ⊊ πnj (A) and Jj+1 ⊊ Aj+1 such that πnj (A)/Ij
∼= Aj+1/Jj+1 and

πnj+1(A) = πnj (A)×Aj+1/Jj+1
Aj+1;

in particular,

πnn(A) = A = (((A1 ×A2/J2 A2)×A3/J3 A3) · · · ×An−1/Jn−1 An−1)×An/Jn An.

(iii) There exist ideals H1, . . . , Hn ⊆ A with
⋂n
i=1Hi = (0) and Gj := (

⋂j−1
i=1 Hi) +

Hj ̸= A for all j ∈ {2, . . . , n}, together with isomorphisms gi : Ai
∼=−→ A/Hi

(i ∈ [n]) yielding an isomorphism g :
∏n

i=1Ai
∼=−→
∏n

i=1A/Hi such that g↾A(a) =

(a/H1, . . . , a/Hn), and g↾A is an isomorphism

A ∼=
(((

A

H1

× A
G2

A

H2

)
× A

G3

A

H3

)
· · · × A

Gn−1

A

Hn−1

)
× A

Gn

A

Hn

.

Proof. The proof is by induction on n ∈ N≥2. The base case n = 2 is exactly Corollary

4.2.18, so assume now that the proposition holds true for some n := k ∈ N>2. Let

A1, . . . , Ak, Ak+1 be local rings, A ⊆
∏k+1

i=1 Ai be a subring, and define B := πk+1
k (A) ⊆∏k

i=1Ai; note in particular that πkj (B) = πk+1
j (A) for all j ∈ [k].

(i)⇒ (ii). Since A is a subdirect product of {A1, . . . , Ak, Ak+1}, πk+1
1 (A) = A1 and

B is a subdirect product of {A1, . . . , Ak}, and since B is a homomorphic image of

A and A is local, B is also local, hence by inductive hypothesis, for all j ∈ [k − 1]

there exist ideals Ij ⊊ πkj (B) and Jj+1 ⊊ Aj+1 such that πkj (B)/Ij ∼= Aj+1/Jj+1 and

πkj+1(B) = πkj (B)×Aj+1/Jj+1
Aj+1; since A is also a subdirect product of {B,Ak+1} and

B is a local, by the implication (i) ⇒ (ii) in Corollary 4.2.18 there exist ideals Ik ⊊ B

and Jk+1 ⊊ Ak+1 such that B/Ik ∼= Ak+1/Ik+1 and A = B ×Ak+1/Jk+1
Ak+1; (ii) now

follows from πkj (B) = πk+1
j (A) for all j ∈ [k − 1] and B = πk+1

k (A).

(ii) ⇒ (iii). Since πk+1
1 (A) = A1 by assumption, πk1(B) = A1. Therefore, by

inductive hypothesis there exist ideals H ′
1, . . . , H

′
k ⊆ B such that

⋂k
i=1H

′
i = (0),

G′
j := (

⋂j−1
i=1 H

′
i) + H ′

j ̸= B for all j ∈ {2, . . . , k}, and there exist isomorphisms
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g′i : Ai
∼=−→ B/H ′

i (i ∈ [k]) yielding an isomorphism g′ :
∏k

i=1Ai −→
∏k

i=1B/H
′
i such

that (g′)↾B(b) = (b/H ′
1, . . . , b/H

′
k) for all b ∈ B, and (g′)↾B is an isomorphism

B ∼=
(((

B

H ′
1

× B
G′
2

B

H ′
2

)
× B

G′
3

B

H ′
3

)
· · · × B

G′
k−1

B

H ′
k−1

)
× B

G′
k

B

H ′
k

;

note in particular that since Ai ∼= B/H ′
i is a local ring for all i ∈ [k] and G′

j ̸= B for all

j ∈ {2, . . . , k}, B is also a local ring. Since A = πk+1
k+1(A) = πk+1

k (A)×Ak+1/Jk+1
Ak+1 =

B ×Ak+1/Jk+1
Ak+1 by assumption, by the implication (ii) ⇒ (iii) in Corollary 4.2.18

there exist ideals H ′′
1 , H

′′
2 ⊆ A such that H ′′

1 ∩H ′′
2 = (0) and H ′′

1 ⊕H ′′
1 ̸= A, and there

exist isomorphisms g′′1 : B
∼=−→ A/H ′′

1 and g′′2 : Ak+1

∼=−→ A/H ′′
2 yielding an isomorphism

g′′ : B×Ak+1 −→ A/H ′′
1×A/H ′′

2 such that (g′′)↾A(a) = (a/H ′′
1 , a/H

′′
2 ) for all a ∈ A, and

(g′′)↾A is an isomorphism A ∼= A/H ′′
1 ×A/(H′′

1 ⊕H′′
2 )
A/H ′′

2 ; moreover, by Corollary 4.2.18

(b), H ′′
1 = ker((πk+1

k )↾A) and H
′′
2 = ker((πk+1)↾A)). Define Hi := ((πk+1

k )↾A)
−1(H ′

i) for

all i ∈ [k], Hk+1 := H ′′
2 , and Gj := (

⋂j−1
i=1 Hi) +Hj for all j ∈ {2, . . . , k + 1}. Then

k⋂
i=1

Hi =
k⋂
i=1

((πk+1
k )↾A)

−1(H ′
i) = ((πk+1

k )↾A)
−1

(
k⋂
i=1

H ′
i

)
= ((πk+1

k )↾A)
−1(0) = ker((πk+1

k )↾A) = H ′′
1

hence
⋂k+1
i=1 Hi = H ′′

1 ∩ H ′′
2 = (0) and Gk+1 = (

⋂k
i=1Hi) + Hk+1 = H ′′

1 ⊕ H ′′
2 ̸= A.

Moreover, since (πk+1
k )↾A : A −↠ B is surjective, it follows from the above that (πk+1

k )↾A

induces isomorphisms hi : B/H
′
i −→ A/Hi given by πk+1

k (a)/H ′
i 7→ a/Hi for all i ∈ [k],

and also that Gj = ((πk+1
k )↾A)

−1(G′
j) and A/Gj

∼= B/G′
j for all j ∈ {2, . . . , k}, hence

Gj ̸= A for all j ∈ {2, . . . , k}, and the isomorphisms gi := (hi ◦ g′i) : Ai −→ A/Hi

(i ∈ [k]) and gk+1 := g′′2 : Ak+1 −→ A/Hk+1 yield an isomorphism g :
∏k+1

i=1 Ai −→∏k+1
i=1 A/Hi verifying the last statement in item (iii).

(iii) ⇒ (i). Clear using the same argument as in the proof of the implication (iii)

⇒ (i) in Lemma 4.2.16 and noting that A is a local ring since A/Hi is a local ring for

all i ∈ [k + 1] and Gj ̸= A for all j ∈ {2 . . . , k + 1}.

Remark 4.2.21. The condition πn1 (A) = A1 is necessary for the equivalence of (i) and

(ii) in Proposition 4.2.20 to be true. For example, let V be a non-trivial valuation

ring, and define A1 := qf(V ), A2 := V , and A := V ×V/mV
V ; then π2

1(A) = V ̸= A1

and A is a subring of A1 × A2 such that A = π2
1(A) ×A2/J2 A2 where I1 = J2 := mV ,

but A it is not a subdirect product of {A1, A2}.
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Theorem 4.2.22. Let n ∈ N≥2 and A be a ring which is not a field. The following

are equivalent:

(i) A is a reduced local SV-ring of rank at most n.

(ii) A is a local ring, and there exist non-trivial valuation rings A1, . . . , An and an

injective ring homomorphism ε : A ↪−→
∏n

i=1Ai such that ε(A) is a subdirect

product of {A1, . . . , An}.

(iii) There exist non-trivial valuation rings A1, . . . , An and an injective ring homo-

morphism ε : A ↪−→
∏n

i=1Ai, such that (πn1 ◦ ε)(A) = A1 (see Notation 4.2.19),

and for all j ∈ [n − 1] there exist ideals Ij ⊊ (πnj ◦ ε)(A) and Jj+1 ⊊ Aj+1 such

that (πnj ◦ ε)(A)/Ij ∼= Aj+1/Jj+1 and

(πnj+1 ◦ ε)(A) = (πnj ◦ ε)(A)×Aj+1/Jj+1
Aj+1;

in particular, A is isomorphic to

(πnn ◦ ε)(A) = (((A1 ×A2/J2 A2)×A3/J3 A3) · · · ×An−1/Jn−1 An−1)×An/Jn An.

(iv) There are prime ideals p1, . . . , pn ⊆ A such that
⋂n
i=1 pi = (0), Gj := (

⋂j−1
i=1 pi)+

pj ̸= A for all j ∈ {2, . . . , n}, A/pi is a non-trivial valuation ring for all

i ∈ [n], and the canonical ring homomorphism A −→
∏n

i=1A/pi given by

a 7→ (a/p1, . . . , a/pn) restricts to an isomorphism

A ∼=
(((

A

p1
× A

G2

A

p2

)
× A

G3

A

p3

)
· · · × A

Gn−1

A

pn−1

)
× A

Gn

A

pn
.

Moreover, if any of the items (i) - (iv) holds, then the following are equivalent:

(a) A has rank exactly n.

(b) For all S ⊊ [n], the map πS ◦ ε : A −↠
∏

i∈S Ai is not injective, where Ai

(i ∈ [n]) and ε are as in items (ii) and (iii), and πS :
∏n

i=1Ai −↠
∏

i∈S Ai is the

canonical projection.

(c) pi and pj are incomparable under subset inclusion for all i, j ∈ [n] with i ̸= j,

where pi are the prime ideals of A in item (iv).
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Proof. The equivalence of items (ii) - (iv) follows from Proposition 4.2.20; it therefore

remains to show the equivalence of items (i) and (ii), as well as the equivalence of (a)

- (c).

(i) ⇒ (ii). Since A is local with rank at most n, Specmin(A) = {p1, . . . , pm} for

some m ∈ [n], and since A is reduced, Nil(A) =
⋂

p∈Spec(A) p =
⋂

p∈Specmin(A) p = (0),

and thus the canonical map A −→
∏m

i=1A/pi is injective. Since A is not a field and a

local SV-ring, each factor ring Ai := A/pi is a non-trivial valuation domain, therefore

(ii) follows by taking Am+1 = · · · = An := Am and ε : A ↪−→
∏n

i=1Ai to be the

canonical map a 7→ (a/p1, . . . , a/pm, a/pm, . . . , a/pm).

(ii) ⇒ (i). Since each Ai is a domain and A is isomorphic to the subring ε(A) ⊆∏n
i=1Ai, A is reduced, so it remains to show that A is an SV-ring of rank at most

n. Since A is local, it suffices to show by the implication (ii) ⇒ (i) in Theorem 4.2.2

that A has at most n minimal prime ideals p1, . . . , pn, and that A/pi is a non-trivial

valuation ring for all i ∈ [n]. For each i ∈ [n], define pi := ker(πi ◦ ε); then p1, . . . , pn

are prime ideals of A such that each A/pi is a non-trivial valuation ring, and it follows

by Lemma 4.2.13 (I) that Specmin(A) ⊆ {p1, . . . , pn}, as required.

If any of the items (i) - (iv) holds, then the equivalence of items (a) - (c) follows

by Lemma 4.2.13 (II).

Remark 4.2.23. Recall that a ring is semi-local if it has finitely many maximal ideals;

it is not difficult to see from the proofs of Proposition 4.2.20 and of Theorem 4.2.22

that the class of rings which are isomorphic to subdirect products of finitely many

local domains (resp., valuation rings) is exactly the class of reduced semi-local rings

(resp., reduced semi-local SV-rings) of finite rank.

4.3 Branching ideals

Definition 4.3.1. Let A be a ring. A prime ideal q of A (prime ideals are always

proper subsets) is a branching ideal if there exist distinct q1, q2 ∈ Spec(A) such that

q1, q2 ⊊ q and q = q1 + q2.

Remark 4.3.2. Let A be a real closed ring.

(i) If q ∈ Spec(A) is a branching ideal, then rk(A, q) ≥ 2 by Theorem 2.3.2 (II) (iii),
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but the converse does not hold: consider the maximal ideal of A := V ×V/p V ,

where V is a non-trivial real closed valuation ring of Krull dimension at least 2

and p is a non-zero non-maximal prime ideal of V , noting that A is a real closed

ring by items (I) and (II) (i) in Theorem 2.3.2.

(ii) A has at least one branching ideal if and only if rk(A) ≥ 2. One implication is

clear; conversely, if q1, q2 ∈ Spec(A) witness that q ∈ Spec(A) is a branching

ideal, then any p1, p2 ∈ Specmin(A) such that p1 ⊆ q1 and p2 ⊆ q2 are distinct

by Theorem 2.3.2 (II) (iii), therefore rk(A) ≥ rk(A, q) ≥ 2.

Lemma 4.3.3. Let A be a ring and let q1, q2 ∈ Spec(A) be incomparable prime ideals in

(Spec(A),⊆). If p1 ∈ q↓1 and p2 ∈ q↓2 are such that p↑1 and p↑2 are chains in (Spec(A),⊆)

and p1 + p2 ∈ Spec(A), then p1 + p2 = q1 + q2.

Proof. The inclusion p1 + p2 ⊆ q1 + q2 is clear, and for the other inclusion it suffices

to show that q1 ⊆ p1 + p2 and q2 ⊆ p1 + p2; in turn, it follows by the assumptions

on p1 and p2 that it suffices to show that p1 + p2 ̸⊆ q1 and p1 + p2 ̸⊆ q2. Assume for

contradiction that p1 + p2 ⊆ q1; then q1 and q2 are incomparable prime ideals in p↑2,

contradicting that p↑2 is a chain, therefore q1 ⊆ p1 + p2. The proof of q2 ⊆ p1 + p2 is

analogous.

Lemma 4.3.4. Let A be a local real closed ring and p1, . . . , pn ∈ Spec(A) (n ∈ N≥2) be

pairwise incomparable under subset inclusion. For all i ∈ [n] there exists j ∈ [n] \ {i}

such that
∑n

k=1 pk = pi + pj.

Proof. The proof is by induction on n ∈ N≥2. The base case is clear, so assume that

the statement holds for some n ∈ N>2 and let p1, . . . , pn+1 ∈ Spec(A) be pairwise

incomparable under subset inclusion. Let i ∈ [n + 1] be arbitrary and pick j0 ∈

[n + 1] \ {i}. By inductive hypothesis, there exists j ∈ [n + 1] \ {i, j0} such that∑
k∈[n+1]\{i} pk = pj0 + pj, hence

∑n+1
k=1 pk = pi + pj0 + pj; since A is a local real closed

ring, either pi+ pj ⊆ pi+ pj0 or pi+ pj0 ⊆ pi+ pj by items (II) (iii) and (II) (iv) (a) in

Theorem 2.3.2, hence either
∑n+1

k=1 pk = pi+ pj0 or
∑n+1

k=1 pk = pi+ pj, as required.

Proposition 4.3.5. Let A be a local real closed ring of rank n ∈ N≥2. The following

are equivalent:

(i) mA is a branching ideal.
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(ii) For all q1 ∈ Spec(A) there exists q2 ∈ Spec(A) \ {q1} such that q1, q2 ⊊ mA and

mA = q1 + q2.

(iii) There exist distinct p1, p2 ∈ Specmin(A) such that mA = p1 + p2.

(iv) For all p1 ∈ Specmin(A) there exists p2 ∈ Specmin(A)\{p1} such that mA = p1+p2.

(v) Every non-unit of A is a sum of two zero divisors.

(vi) There exists a partition S1 ∪̇ S2 = Specmin(A) such that (
⋂

p∈S1
p) + (

⋂
p∈S2

p) =

mA.

(vii) There exist r, s ∈ [n] and local real closed rings A1 and A2 with isomorphic

residue field K such that r+ s = n, rk(A1) = r, rk(A2) = s, and A ∼= A1 ×K A2.

Proof. Since A is local of rank n ∈ N≥2, Specmin(A) := {p1, . . . , pn}.

(i) ⇔ (ii). One implication is clear, so suppose that (i) holds and assume for con-

tradiction that there exists q ∈ Spec(A) such that q + q′ ⊊ mA for all q′ ∈ Spec(A)

with q ̸= q′. By (i), there exist distinct q1, q2 ∈ Spec(A) such that q1, q2 ⊊ mA and

mA = q1 + q2; in particular, q ̸= q1 and q ̸= q2. Since A is a local real closed ring,

either q+ q1 ⊆ q+ q2 or q+ q2 ⊆ q+ q1, and assuming without loss of generality the

former, it follows that mA = q1+q2 = q+(q1+q2) ⊆ q+q2 ⊊ mA, giving the required

contradiction.

(i) ⇔ (iii) and (ii) ⇔ (iv). Clear by Lemma 4.3.3 noting that if q, q′ ∈ Spec(A)

are distinct prime ideals such that q, q′ ⊊ mA and q + q′ = mA, then q and q′ are

incomparable under subset inclusion.

(iii) ⇒ (v). Clear since mA consists exactly of the non-units of A and since the set

of zero divisors of A is exactly
⋃n
i=1 pi as A is reduced.

(v) ⇒ (iii). Since A is a reduced local ring, (v) is equivalent to the statement that

for all ε ∈ mA there exist i, j ∈ [n] such that ε = bi + bj for some bi ∈ pi and bj ∈ pj,

i.e., mA ⊆
⋃
i,j∈[n](pi + pj); by Lemma 4.3.4, there exist i′, j′ ∈ [n] with i′ ̸= j′ such

that
∑n

i=1 pi = pi′ + pj′ , therefore

⋃
i,j∈[n]

(pi + pj) ⊆
n∑
i=1

pi = pi′ + pj′ ⊆ mA ⊆
⋃

i,j∈[n]

(pi + pj)

implies mA = pi′ + pj′ , as required (note that pi′ , pj′ ⊊ mA since rk(A) ≥ 2).
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(iv) ⇒ (vi). Pick any pi ∈ Specmin(A) and define S1 := {p ∈ Specmin(A) | pi + p =

mA} and S2 := {p ∈ Specmin(A) | pi + p ̸= mA}. Note that pi ∈ S2, and also S1 ̸= ∅

by (iv), therefore S1 ∪̇ S2 = Specmin(A) is a partition.

Claim. If p ∈ S1 and q ∈ S2, then p+ q = mA.

Proof of Claim. Since q ⊆ p + q, pi + q, either p + q ⊆ pi + q or pi + q ⊆ p + q; in

the former case it follows that mA = pi + (p + q) ⊆ pi + q, a contradiction to q ∈ S2,

therefore pi+ q ⊆ p+ q, hence pi, p ⊆ p+ q, and thus mA = pi+ p ⊆ p+ q from which

the claim follows. □Claim

Therefore (⋂
p∈S1

p

)
+

(⋂
p∈S2

p

)
(1)
=

⋂
p∈S1,q∈S2

(p+ q)
(2)
= mA,

where (1) follows from Theorem 2.3.2 (II) (iv) (b) and (2) follows from the claim above.

(vi) ⇒ (vii). Let S1 ∪̇ S2 = Specmin(A) be a partition such that (
⋂

p∈S1
p) +

(
⋂

p∈S2
p) = mA. Set r := |S1|, s := |S2|, A1 := A/

⋂
p∈S1

p, and A2 := A/
⋂

p∈S2
p; then

A1 and A2 are local real closed rings of ranks r and s (respectively) with isomorphic

residue field A/mA =: K such that r + s = n and A ∼= A1 ×K A2, where the latter

statement follows from Lemma 4.2.14.

(vii) ⇒ (i). Clear by the description of the Zariski spectrum of the fibre product

A1 ×K A2 as Spec(A1 ×K A2) ∼= Spec(A1) ⨿Spec(K) Spec(A2) and noting that neither

A1 nor A2 are fields, see [DST19, Section 12.5.7] (for an algebraic proof, pick ri ∈

Spec(Ai) \ {mAi
} and set qi := ker(A1 ×K A2 ↠ Ai/ri) ∈ Spec(A1 ×K A2); then

q1 = r1×mA2 , q2 = mA1 × r2, and mA = mA1 ×mA2 as subsets of A1×K A2 ⊆ A1×A2,

hence mA = q1 + q2 is a branching ideal).

Remark 4.3.6. Let A be a real closed ring of finite rank and q ∈ Spec(A); clearly q

is a branching ideal if and only if mAq = qAq is a branching ideal of Aq, therefore

Proposition 4.3.5 can be applied to give equivalent characterizations for an arbitrary

prime ideal of A to be a branching ideal; in particular, q ∈ Spec(A) is a branching

ideal if and only if there exist distinct p1, p2 ∈ Specmin(A) such that q = p1 + p2 (this

also follows immediately from Lemma 4.3.3).

Remark 4.3.7. A local real closed ring A of rank n ∈ N can have at most n − 1

branching ideals; in particular, the set of branching ideals of A is finite. If n = 1, then

A is a domain (Lemma 4.2.9 (III) (i)), therefore A has no branching ideals by Remark
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4.3.2 (ii); the statement for n ∈ N≥2 follows by induction using Lemma 4.2.14 and

Theorem 2.3.2 (II) (iii).

Lemma 4.3.8. Let A and B be local real closed rings of rank n ∈ N≥2 and f : A ↪−→ B

be an injective ring homomorphism. If mA is a branching ideal, then f is a local map.

Proof. By assumption and by the implication (i)⇒ (ii) in Proposition 4.3.5, there exist

two distinct minimal prime ideals p1, p2 ⊆ A such that mA = p1 + p2; by Corollary

4.2.11, there exist q1, q2 ∈ Specmin(B) such that f−1(q1) = p1 and f−1(q2) = p2,

therefore

mA = p1 + p2 = f−1(q1) + f−1(q2) ⊆ f−1(q1 + q2) ⊆ f−1(mB),

hence f−1(mB) = mA by maximality of mA.

4.4 Rings of type (n, 1) and of type (n, 2)

The starting point of this subsection is a structure theorem for local real closed SV-

rings of finite rank (Theorem 4.4.2) which is directly deduced from the structure the-

orem for reduced local SV-rings of finite rank (Theorem 4.2.2); first, a lemma:

Lemma 4.4.1. Let A and B be real closed rings. Suppose that there exist ideals I ⊊ A

and J ⊊ B such that A/I ∼= B/J . The fibre product C := A ×B/J B is real closed if

and only if I and J are radical ideals of A and B, respectively; in particular, if either

A or B are real closed valuation rings, then C is real closed if and only if both I and

J are prime ideals of A and B, respectively.

Proof. If I and J are radical ideals, then C is real closed by items (I) and (II) (i)

in Theorem 2.3.2. Conversely, suppose that C is real closed and let pA : C −↠ A

and pB : C −↠ B be the canonical surjections. Since both A and B are real closed,

ker(pA) and ker(pB) are radical ideals of C (Theorem 2.3.2 (II) (i)), and since C is real

closed, ker(pA) ⊕ ker(pB) is also a radical ideal (Theorem 2.3.2 (II) (iv)), therefore I

and J are radical ideals by Remark 4.2.17; the last statement of the lemma follows

from B/J ∼= A/I and from the fact that radical ideals in valuation rings are prime

ideals.
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Theorem 4.4.2. Let n ∈ N≥2 and A be a ring which is not a field. The following are

equivalent:

(i) A is a local real closed SV-ring of rank at most n.

(ii) A is a local real closed ring, and there exist non-trivial real closed valuation

rings A1, . . . , An and an injective ring homomorphism ε : A ↪−→
∏n

i=1Ai such

that ε(A) is a subdirect product of {A1, . . . , An}.

(iii) There exist non-trivial real closed valuation rings A1, . . . , An and an injective

ring homomorphism ε : A ↪−→
∏n

i=1Ai, such that (πn1 ◦ ε)(A) = A1 (Notation

4.2.19), and for all j ∈ [n − 1] there exist prime ideals ij ⊊ (πnj ◦ ε)(A) and

jj+1 ⊊ Aj+1 such that (πnj ◦ ε)(A)/ij ∼= Aj+1/jj+1 and

(πnj+1 ◦ ε)(A) = (πnj ◦ ε)(A)×Aj+1/jj+1
Aj+1;

in particular,

A ∼= (πnn◦ε)(A) = (((A1×A2/j2A2)×A3/j3A3) · · ·×An−1/jn−1An−1)×An/jnAn.

(iv) There exist prime ideals p1, . . . , pn ⊆ A such that
⋂n
i=1 pi = (0), qj := (

⋂j−1
i=1 pi)+

pj ∈ Spec(A) for all j ∈ {2, . . . , n}, A/pi is a non-trivial real closed valuation

ring for all i ∈ [n], and the canonical ring homomorphism A −→
∏n

i=1A/pi

given by a 7→ (a/p1, . . . , a/pn) restricts to an isomorphism

A ∼=
(((

A

p1
× A

q2

A

p2

)
× A

q3

A

p3

)
· · · × A

qn−1

A

pn−1

)
× A

qn

A

pn
.

Moreover, if any of the items (i) - (iv) holds and rk(A) = n, then the prime ideals

p1, . . . , pn ⊆ A in item (iv) are pairwise incomparable under subset inclusion and

Specmin(A) = {pi | i ∈ [n]}.

Proof. Note first that each of the items (i) - (iv) in the theorem implies the corre-

sponding item in Theorem 4.2.22.

(i) ⇒ (ii). By the implication (i) ⇒ (ii) in Theorem 4.2.22, it suffices to show that

the non-trivial valuation rings A1, . . . , An in item (ii) of Theorem 4.2.22 are real closed.

Since πi ◦ ε : A −↠ Ai is surjective and Ai is a domain for each i ∈ [n], ker(πi ◦ ε) is

a prime ideal of A, hence radical, therefore Ai ∼= A/ker(πi ◦ ε) is real closed since A is

real closed (Theorem 2.3.2 (II) (i)).
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(ii) ⇒ (iii). By the implication (ii) ⇒ (iii) in Theorem 4.2.22, it suffices to show

that the ideals Ij ⊊ (πnj ◦ ε)(A) and Jj+1 ⊊ Aj+1 in item (iii) of Theorem 4.2.22 are

prime for all j ∈ [n− 1]. Pick j ∈ [n− 1]; since (πnj+1 ◦ ε)(A) is a subring of
∏j+1

i=1 Ai,

(πnj+1 ◦ ε)(A) is reduced, and thus ker(πnj+1 ◦ ε) is a radical ideal of A, and since A is

real closed, it follows that (πnj+1 ◦ ε)(A) is also real closed for all j ∈ {1, . . . , n− 1} by

Theorem 2.3.2 (II) (i). Since πn1 (A) = π1(A) = A1 is real closed, it now follows from

(πnj+1 ◦ ε)(A) ∼= (πnj ◦ ε)(A) ×Aj+1/Jj+1
Aj+1 and from Lemma 4.4.1 that Ij ⊊ πnj (A)

and Jj+1 ⊊ Aj+1 are prime ideals for all j ∈ {1, . . . , n− 1}.

(iii) ⇒ (iv). By the implication (iii) ⇒ (iv) in Theorem 4.2.22, it suffices to show

that the non-trivial valuation ring A/pi is real closed for all i ∈ [n] and that Gj ∈

Spec(A) for all j ∈ {2, . . . , n}, where pi and Gj are the ideals of A in item (iv) of

Theorem 4.2.22. By (iii) and Lemma 4.4.1, A is real closed, therefore A/pi is real

closed by Theorem 2.3.2 (II) (i). Since A is real closed and the intersection of radical

ideals is radical, Gj = (
⋂j−1
i=1 pi) + pj is a radical ideal of A by Theorem 2.3.2 (II) (iv),

hence Gj/pj is a radical ideal of the valuation ring A/pj, therefore it is prime, from

which Gj ∈ Spec(A) follows.

(iv) ⇒ (i). By the implication of (iv) ⇒ (i) in Theorem 4.2.22, it suffices to argue

that A is real closed; but this follows from Lemma 4.4.1 together with the fact that

each A/pi is real closed and that each of the ideals qj are prime.

Finally, if any of the items (i) - (iv) holds and p1, . . . , pn ⊆ A are the prime

ideals in item (iv), then A is a local ring and a subdirect product of the domains

{A/p1, . . . , A/pn}, therefore if rk(A) = n, then Specmin(A) = {pi | i ∈ [n]} follows by

Lemma 4.2.13 (II).

Remark 4.4.3. Let A be a local real closed SV-ring of rank n ∈ N≥2 and write

Specmin(A) = {pi | i ∈ [n]}; the ideals qj := (
⋂j−1
i=1 pi) + pj ∈ Spec(A) (j ∈ [n− 1]) in

item (iv) of Theorem 4.4.2 are exactly the branching ideals of A (note that it could

be the case that qi = qj for i ̸= j). Pick j ∈ [n − 1]; then qj = (
⋂j−1
i=1 pi) + pj =⋂j−1

i=1 (pi + pj) = pk + pj for some k ∈ [j − 1] by items (II) (iii), (II) (iv) (a), and (II)

(iv) (b) in Theorem 2.3.2, therefore qj is a branching ideal. Conversely, suppose that

q ∈ Spec(A) is a branching ideal; By Remark 4.3.6 there exist distinct i, j ∈ [n] such

that i ̸= j and q = pi + pj. Let i ∈ [n] be minimal with the property that there exists

j0 ∈ [n] such that i < j0 and pi+pj0 = q, and let j ∈ [n] be minimal with the property
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that i < j and pi+ pj = q. Assume for contradiction that there exists k ∈ [j− 1] such

that pk+ pj ⊊ pi+ pj; note in particular that pi+ pk ⊆ pi+ pj. Then pi+ pk ̸⊆ pj + pk

as otherwise pi ⊆ pi + pk ⊆ pj + pk implies pi + pj ⊆ pj + pk ⊊ pi + pj, therefore

pj + pk ⊆ pi + pk, and thus pi + pj ⊆ pi + pk ⊆ pi + pj, hence pi + pk = pi + pj = q,

a contradiction to minimality of j. Therefore pi + pj ⊆ pk + pj for all k ∈ [j − 1], and

thus qj = (
⋂
k∈[j−1] pk) + pj =

⋂
k∈[j−1](pk + pj) = pi + pj = q, as required.

Remark 4.4.4. It is clear from the proof of Theorem 4.4.2 that a similar structure

theorem holds for local real closed rings of finite rank: just replace every occurrence

of “non-trivial real closed valuation ring” by “non-trivial real closed domain”.

Remark 4.4.5. Any real closed ring has bounded inversion ([SM99, Example 2.11,

Proposition 12.4. (b)]), therefore a real closed domain is a real closed valuation ring

if and only if it is 1-convex by [Lar10, Lemma 2.2]; in particular, local real closed

SV-rings of finite rank are particular examples of Larson’s finitely 1-convex f -rings,

see [Lar11].

Let A be a local real closed SV-ring of rank n ∈ N≥2; by the implication (i) ⇒

(iv) in Theorem 4.4.2, A is isomorphic to a finite iterated fibre product of non-trivial

real closed valuation rings A/pi along surjective homomorphisms A/pi −↠ A/qj onto

real closed valuation rings A/qj, and the simplest such rings are the ones for which

A/qi ∼= A/qj for all i, j ∈ [n], i.e., local real closed SV-rings of rank n with exactly

one branching ideal (Remark 4.4.3). The focus of the remaining part of this section is

on rings of this latter class.

Notation 4.4.6. Let {Ai}i∈I be a non-empty family of rings such that there exists a

ring B and surjective ring homomorphisms fi : Ai −↠ B for all i ∈ I. Let

∏
B,i∈I

Ai :=

{
(ai)i∈I ∈

∏
i∈I

Ai | fi(ai) = fj(aj) for all i, j ∈ I

}

be the I-fold fibre product of {Ai}i∈I over B (along {fi}i∈I). If there exists a ring A

such that Ai = A for all i ∈ I, then set
∏I

BA :=
∏

B,i∈IAi; if moreover I = [n] for

some n ∈ N, then set
∏n

BA :=
∏[n]

B A.

Lemma 4.4.7. Let A be a local real closed SV-ring of rank n ∈ N≥2 and write

Specmin(A) = {pi | i ∈ [n]}. The following are equivalent:
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(i) A has exactly one branching ideal.

(ii) pi + pj = pk + pℓ for all i, j, k, ℓ ∈ [n] such that i ̸= j and k ̸= ℓ.

(iii) There exist non-trivial real closed valuation rings A1, . . . , An and surjective ring

homomorphisms fi : Ai −↠ C (i ∈ [n]) onto a real closed valuation ring C such

that ker(fi) ̸= (0) for all i ∈ [n] and A ∼=
∏

C,i∈[n]Ai.

In particular, if any of the conditions (i) - (iii) holds and bA ∈ Spec(A) is the unique

branching ideal of A, then

(a) bA = pi + pj for all i, j ∈ [n] such that i ̸= j, and

(b) the canonical embedding A ↪−→
∏

i∈[n]A/pi given by a 7→ (a/pi)i∈[n] corestricts

to an isomorphism A ∼=
∏

A/bA,i∈[n]A/pi

Proof. (i) ⇒ (ii). Clear by Remark 4.3.6.

(ii) ⇒ (iii). Since A is local of rank n, Specmin(A) := {p1, . . . , pn}. Define Ai :=

A/pi and qj := (
⋂j−1
i=1 pi) + pj for all j ∈ {2, . . . , n}. If j ∈ {2, . . . , n}, then qj =⋂j−1

i=1 (pi+pj) by Theorem 2.3.2 (II) (iv) (b), and since pi+pj ∈ Spec(A) for all i ∈ [j−1]

by Theorem 2.3.2 (II) (iv) (a), there exists j′ ∈ [j − 1] such that qj =
⋂j−1
i=1 (pi + pj) =

pj′ + pj by Theorem 2.3.2 (II) (iii), therefore it follows by (ii) that qj = qi for all

i, j ∈ {2, . . . , n}. Define q := qj for some (equivalently, all) j ∈ {2, . . . , n}; then

A ∼=
∏

A/q,i∈[n]A/pi by the implication (i) ⇒ (iv) and the moreover part in Theorem

4.4.2, from which (iii) follows.

(iii) ⇒ (i). Spec(C) is a closed subspace of Spec(A) with unique generic point

q = ker(A ↠ C), therefore follows from the description in [DST19, Section 12.5.7] of

Spec(A) that the unique branching ideal of A is q.

The last statement in the lemma follows from the proof of the equivalences (i) -

(iii).

Definition 4.4.8. Let A be a ring and n ∈ N≥2.

(i) A is of type (n, 1) if A is a local real closed SV-ring of rank n with exactly one

branching ideal bA, which moreover is maximal.

(ii) A is of type (n, 2) if A is a local real closed SV-ring of rank n with exactly one

branching ideal bA, which moreover is not maximal.
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Example 4.4.9. Let R be a real closed field, X ⊆ Rm be a semi-algebraic curve, and

a ∈ X be a point with branching degree n ∈ N≥2 (see Subsection 2.3.2). It follows by

the implication (iii) ⇒ (i) in Lemma 4.4.7 and Corollary 2.3.37 that the ring of germs

of continuous semi-algebraic functions X −→ R at a is a ring of type (n, 1).

4.4.1 Embeddings of rings of type (n, 1) and of type (n, 2)

This section concludes with embedding statements about rings of type (n, 1) and of

type (n, 2) which have a key impact on the model theory of these rings; in particular,

Lemmas 4.4.21 and 4.4.22 (which can be thought of as a higher-rank version of Propo-

sition 2.3.9) are essential for the model completeness proofs in Section 4.5. Start with

the following and almost trivial:

Lemma 4.4.10. Let A be a local real closed SV-ring of rank n ∈ N≥2. There exists a

ring A′ of type (n, 1) and a local embedding A ↪−→ A′.

Proof. Set Specmin(A) = {pi | i ∈ [n]}. The canonical map A ↪−→
∏

i∈[n]A/pi given

by a 7→ (a/p1, . . . , a/pn) is an embedding, and each A/pi is a non-trivial real closed

valuation ring with residue field A/mA, from which follows that A′ :=
∏

A/mA,i∈[n]A/pi

is a ring of type (n, 1) and the embedding A ↪−→
∏

i∈[n]Ai corestricts to a local

embedding A ↪−→ A′.

In fact, Lemma 4.4.10 still holds even if A is not an SV-ring; first, a lemma:

Lemma 4.4.11. Let A be a real closed domain.

(i) A = qf(A) if and only if A is cofinal in qf(A).

(ii) Suppose that A is non-trivial, i.e., A ̸= qf(A). The convex hull VA of A in qf(A)

is a non-trivial real closed valuation ring such that A ∩mVA = mA.

Proof. (i). Suppose that A is cofinal in qf(A) and pick a ∈ A>0. Then there exists

b ∈ A such that 0 < a−1 < b, therefore 0 < 1 < ab and thus there exists c ∈ A such

that abc = 12 = 1 (Definition 2.3.1 (iii)), from which a−1 = bc ∈ A follows.

(ii). VA is a non-trivial real closed valuation ring because it is a proper convex

subring of qf(A) by item (i). Clearly A ∩ mVA ⊆ mA. Conversely, pick a ∈ mA such

that a > 0 and assume for contradiction that a /∈ mVA ; then a
−1 ∈ VA, therefore there
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exists b ∈ A such that 0 < a−1 < b, and thus arguing as in the proof of item (i) it

follows that a−1 ∈ A, yielding the required contradiction.

Proposition 4.4.12. Let A be a local real closed ring of rank n ∈ N≥2. There exists

a ring B of type (n, 1) and a local embedding A ↪−→ B.

Proof. Set Specmin(A) = {pi | i ∈ [n]}; each A/pi is a non-trivial real closed domain

with residue field A/mA, therefore the canonical embedding A ↪−→
∏

i∈[n]A/pi given

by a 7→ (a/pi)i∈[n] corestricts to a local embedding A ↪−→
∏

A/mA,i∈[n]A/pi =: B0. For

each i ∈ [n], the convex hull Vi of A/pi in qf(A/pi) is a non-trivial real closed valuation

ring by Lemma 4.4.11 (ii). Let k i := Vi/mVi and Γi := qf(Vi)
×/V ×

i for all i ∈ [n]; note

that since A ∩ mVi = mA (Lemma 4.4.11 (ii)), the residue field A/mA embeds into k i

for all i ∈ [n]. Let k be a real closed field amalgamating all the ki over A/mA, let

Γ be a divisible totally ordered abelian group into which all the Γi embed, and let

εi : Vi ↪−→ ki[[Γi]] be a local embedding for all i ∈ [n] (these exist by Proposition

2.3.9); all this data fits into commutative diagrams

A/mAA/pi A/pj

Vi Vj

k

ki kj

ki[[Γi]] kj[[Γj]]

ki[[Γ]] kj[[Γ]]k [[Γ]]

εi εj

for all i, j ∈ [n]. Commutativity of the diagrams above for all i, j ∈ [n] implies that

the resulting composite local embeddings

A/pi ↪−→ Vi
εi
↪−→ ki[[Γi]] ↪→ ki[[Γ]] ↪→ k[[Γ]]

for all i ∈ [n] yield a local embedding B0 ↪−→
∏n

kk [[Γ]] =: B, therefore the composite

map A ↪→ B0 ↪→ B is a local embedding of A into the ring B of type (n, 1), as

required.
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Convention 4.4.13. Let j ∈ [2], and let A and B be rings of type (n, j) such that

A ⊆ B; write also Specmin(A) := {pi | i ∈ [n]} and Specmin(B) := {qi | i ∈ [n]}.

By Corollary 4.2.11 it can be assumed that qi ∩ A = pi for all i ∈ [n], and thus

by the implication (i) ⇒ (iii) and item (b) in Lemma 4.4.7 it can be assumed that

A =
∏

C,i∈[n]Ai and B =
∏

D,i∈[n]Bi, where Ai := A/pi and Bi := B/qi for all i ∈ [n],

C := A/bA, and D := B/bB; in particular, the embedding A ⊆ B induces embeddings

Ai ⊆ Bi for all i ∈ [n].

Lemma 4.4.14. Let A and B be rings of type (n, 1). Any embedding A ⊆ B is local

and it induces local embeddings Ai ⊆ Bi for all i ∈ [n] (Convention 4.4.13).

Proof. That any embedding A ⊆ B is local follows from Lemma 4.3.8; since A ⊆ B is

local, so are each of the embeddings Ai ⊆ Bi (Remark 4.2.12).

Lemma 4.4.14 says that any embedding A ⊆ B of rings of type (n, 1) sends the

unique branching ideal bB of B to the unique branching ideal bA of A, i.e., bB∩A = bA,

and since the branching ideals of these rings are exactly the maximal ideals, this

means that A ⊆ B is a local embedding; the next example shows that this property of

arbitrary embeddings of rings of type (n, 1) does not carry over to rings to type (n, 2):

Example 4.4.15. Let V be a real closed valuation ring of Krull dimension 4 such

that (Spec(V ),⊆) is the chain (0) ⊊ p ⊊ q ⊊ r ⊊ mV ; define A := V ×V/p V ,

B := Vr ×Vr/pVr Vr and C := Vr ×Vr/qVr Vr. Then A ⊆ B and B ⊆ C are embeddings

of rings of type (2, 2) such that the embedding A ⊆ B is not local but bB ∩ A = bA,

and the embedding B ⊆ C is local but bC ∩ B ⊋ bB; in particular, the embedding

A ⊆ C is not local and bC ∩ A ⊋ bA. The diagram below represents the composite

spectral map Spec(C) → Spec(B) → Spec(A) induced by the composite embedding

A ⊆ B ⊆ C

mC

bC

•

AnnC(a1)

•

AnnC(a2)

mB

•

bB

AnnB(a1)AnnB(a2)

mA

•

•

bA

AnnA(a1)AnnA(a2)
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where a1, a2 ∈ A are any non-zero orthogonal elements (Corollary 4.2.11); an analogous

construction shows that for all n ∈ N≥2 there exists embeddings A ⊆ B and B ⊆ C

of rings of type (n, 2) such that A ⊆ B is not a local embedding and such that

bC ∩B ⊋ bB.

Embeddings A ⊆ B of rings of type (n, 2) which satisfy mB∩A = mA and bB∩A =

bB play an important role in the model-theoretic analysis of this class of rings; to this

end, make the following:

Definition 4.4.16. An embedding A ⊆ B of rings of type (n, 2) is good if mB∩A = mA

and bB ∩ A = bB.

Remark 4.4.17. Let A and B be rings of type (n, j) such that A ⊆ B and write

A =
∏

C,i∈[n]Ai and B =
∏

D,i∈[n]Bi (Convention 4.4.13). If j = 1, then C and D are

real closed fields and the embedding A ⊆ B induces an embedding C ⊆ D by Lemma

4.4.14; if j = 2, then C and D is are non-trivial real closed valuation rings and the

embedding A ⊆ B is good if and only if it induces a local embedding C ⊆ D.

Definition 4.4.18. Let f : A ↪−→ B be an injective ring homomorphism and p ∈

Spec(B). Say that f is sharp at p if the induced embedding A/f−1(p) ↪−→ B/p is an

isomorphism.

Definition 4.4.19 (cf. Definition 6 in [Lar11]). Let j ∈ [2]. A ring A of type (n, j)

is homogeneous if there exists a non-trivial real closed valuation ring V together with

surjective ring homomorphism f : V −↠ B onto a real closed valuation ring B such

that A ∼=
∏n

BV (Notation 4.4.6).

Example 4.4.20. Let V and W be non-trivial real closed valuation rings with iso-

morphic residue field k. If there exists a local embedding ε : V ↪−→ W , then ε induces

a local embedding f : V ×k W ↪−→ W ×k W =: B, therefore f is an embedding of a

ring of type (2, 1) into a homogeneous ring of type (2, 1), and f is sharp at mB. This

construction cannot be done in general. More precisely, let k be a real closed field,

Γ be a countable non-archimedean totally ordered divisible abelian group, and define

A := k [[Γ]] ×k k [[R]]; there does not exist any embedding A ↪−→ k [[Γ]] ×k k [[Γ]] nor

any embedding A ↪−→ k [[R]] ×k k [[R]]. Otherwise, such embeddings would induce

either a local embedding k [[R]] ↪−→ k [[Γ]] or a local embedding k [[Γ]] ↪−→ k [[R]]
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(Lemma 4.4.14); the latter embeddings give rise to embeddings of divisible totally

ordered abelian groups R ↪−→ Γ or Γ ↪−→ R, which is impossible by choice of Γ.

Lemma 4.4.21. Let A and B be rings of type (n, 1) such that A ⊆ B. There exist

rings A′ and B′ of type (n, 1) and embeddings εA : A ↪−→ A′ and εB : B ↪−→ B′ such

that A′ ⊆ B′, εA is sharp at bA′ (= mA′), εB is sharp at bB′ (= mB′), A′ and B′ are

homogeneous, and εB↾A = εA.

Proof. Write A =
∏

k,i∈[n]Ai and B =
∏

l,i∈[n]Bi, where Ai and Bi are non-trivial real

closed valuation rings with residue fields k and l (respectively) for all i ∈ [n], see

Convention 4.4.13; set also Γi := qf(Ai)
×/A×

i and ∆i := qf(Bi)
×/B×

i , noting that the

local embedding Ai ⊆ Bi (Lemma 4.4.14) induces a local embedding k[[Γi]] ⊆ l [[∆i]]

for all i ∈ [n]. By Proposition 2.3.9 there exist local embeddings ηi : Ai ↪−→ k [[Γi]]

and δi : Bi ↪−→ l [[∆i]] such that δi↾Ai
= ηi for all i ∈ [n]; by embedding all the

divisible o-groups ∆i into a divisible o-group ∆, it follows that the local embeddings

ηi and δi induce local embeddings η′i : Ai ↪−→ k[[∆]] and δ′i : Bi ↪−→ l[[∆]] such that

δ′i↾Ai
= η′i. Define A′ :=

∏n
kk[[∆]] (Notation 4.4.6), B′ :=

∏n
l l[[∆]], εA to be given

by εA(a) := (η′1(a1), . . . , η
′
n(an)), and εB to be given by εB(b) := (δ′1(b1), . . . , δ

′
n(bn));

it is clear by construction that this choice of data satisfies the requirements in the

statement of the lemma.

Lemma 4.4.22. Let A and B be rings of type (n, 2) such that A ⊆ B and such that

A ⊆ B is a good embedding (Definition 4.4.16). There exist rings A′ and B′ of type

(n, 2), and good embeddings εA : A ↪−→ A′ and εB : B ↪−→ B′, such that A′ ⊆ B′,

the embedding A′ ⊆ B′ is good, εA is sharp at bA′, εB is sharp at bB′, A′ and B′ are

homogeneous, and εB↾A = εA.

Proof. Write A =
∏

C,i∈[n]Ai and B =
∏

D,i∈[n]Bi, where Ai and Bi are non-trivial

real closed valuation rings having non-trivial real closed valuation rings C and D as

homomorphic images (respectively) for all i ∈ [n], see Convention 4.4.13; set also

bAi
:= ker(Ai ↠ C) and bBi

:= ker(Bi ↠ D), noting that neither bAi
nor bBi

are

the zero ideal by the implication (i) ⇒ (iii) in Lemma 4.4.7. For each i ∈ [n], the

localization (Ai)bAi
is a non-trivial real closed valuation ring properly containing Ai

with residue field (Ai)bAi
/bAi

(Ai)bAi
= (Ai)bAi

/bAi
= qf(Ai/bAi

) = qf(C), therefore

Â :=
∏

qf(C),i∈[n](Ai)bAi
is a ring of type (n, 1) such that A ⊆ Â; similarly, B̂ :=
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∏
qf(D),i∈[n](Bi)bBi

is a ring of type (n, 1) such that B ⊆ B̂, and since A ⊆ B a good

embedding, it induces an embedding Â ⊆ B̂ making the obvious square commute (cf.

Remark 4.4.17).

By Lemma 4.4.21, there exist rings Â′ and B̂′ of type (n, 1) and embeddings εÂ :

Â ↪−→ Â′ and εB̂ : B̂ ↪−→ B̂′ such that Â′ ⊆ B̂′, εÂ is sharp at bÂ′ (= mÂ′), εB̂ is

sharp at bB̂′ (= mB̂′), Â′ and B̂′ are homogeneous, and εB̂′↾Â′ = εÂ′ ; in particular,

there exist non-trivial real closed valuation rings V and W with residue fields qf(C)

and qf(D) (respectively) such that V ⊆ W and making the diagram

C

qf(C)

D

qf(D)

Ai

(Ai)bAi

Bi

(Bi)bBi

V W
εÂ,i εB̂,iλV λW

commute for all i ∈ [n], where λV and λW are the residue field maps and εÂ,i and εB̂,i

are the embeddings induced by εÂ and εB̂ (respectively). Define V ′ := λ−1
V (C) and

W ′ := λ−1
W (D); then V ′ and W ′ are non-trivial real closed valuation rings by Lemma

2.3.10, and using the fact that λ−1
V (C) ∼= V ×qf(C) C and λ−1

W (D) ∼= W ×qf(D) D, it

follows from the universal property of the pullback that the diagram

C DAi Bi

V ′ W ′

εA,i εB,i

commutes for all i ∈ [n], where εA,i and εB,i are the restrictions of εÂ,i and εB̂,i to

Ai and Bi (respectively), and V ′ ⊆ W ′ is induced by V ⊆ W . Define A′ :=
∏n

CV
′,

B′ :=
∏n

DW
′, εA : A ↪−→ A′ to be given by εA(a) := (εA,1(a1), . . . , εA,n(an)), and εB :

B ↪−→ B′ to be given by εB(b) := (εB,1(b1), . . . , εB,n(bn)); it is clear by construction

that this choice of data satisfies the requirements in the statement of the lemma.



CHAPTER 4. LOCAL REAL CLOSED SV-RINGS OF FINITE RANK 148

4.5 Model theory

Throughout this section, set L := L ring = {+,−, ·, 0, 1}.

4.5.1 The theories Tn, Tn,1, and Tn,2

Lemma 4.5.1. There exists an L -sentence φrk=n such that for all reduced local rings

A, A |= φrk=n if and only if A has rank n.

Proof. By Lemma 4.2.9 (III) (i) one may define φrk=n to be the L -sentence expressing

the following statement about A: “there exist non-zero pairwise orthogonal elements

a1, . . . , an ∈ A such that if b ∈ A is a non-zero element distinct from all the ai, then b

is not orthogonal to some ai”.

Lemma 4.5.2. There exists an L -sentence φSV,n such that for all reduced local rings

A of rank n, A |= φSV,n if and only if A is an SV-ring; moreover, φSV,n can be chosen

to be a universal sentence in the language L (div), where div is a binary predicate

interpreted as divisibility.

Proof. Let a1, . . . , an ∈ A be any non-zero pairwise orthogonal elements, so that

Specmin(A) = {AnnA(ai) | i ∈ [n]} by Lemma 4.2.9 (III) (ii). By the implication

(i) ⇒ (ii) in Theorem 4.2.2, A is an SV-ring if and only if for all b, c ∈ A and for all

i ∈ [n], b/Ann(ai) divides c/Ann(ai) or c/Ann(ai) divides b/Ann(ai) in A/AnnA(ai);

moreover,

A/AnnA(ai) |= div(b/Ann(ai), c/Ann(ai)) ⇐⇒ A |= ∃x[(bx− c)ai = 0]

⇐⇒ A |= div(bai, cai),

therefore one may define φSV,n to be the L -sentence expressing the following statement

about A: “for all non-zero pairwise orthogonal a1, . . . , an ∈ A and for all b, c ∈ A, either

bai divides cai or cai divides bai”.

Definition 4.5.3. Let Tn to be the L -theory of local real closed SV-rings of rank n;

explicitly, an axiomatization for Tn consists of the L -axioms for local real closed rings

([PS, pp. 5, 9]) together with the sentences φrk=n and φSV,n defined in Lemmas 4.5.1

and 4.5.2, respectively.
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Definition 4.5.4. Let φbr,n to be the L -sentence expressing the following statement

about a ring A: “Ann(ai) + Ann(aj) = Ann(ak) + Ann(aℓ) for all pairwise orthogonal

non-zero elements a1, . . . , an ∈ A and for all i, j, k, ℓ ∈ [n] such that i ̸= j and k ̸= ℓ.”

Lemma 4.5.5. The following are equivalent for all local real closed rings A of rank n:

(i) A |= φbr,n.

(ii) A has exactly one branching ideal.

Proof. By the equivalence (i) ⇔ (ii) in Lemma 4.4.7 together with Lemma 4.2.9 (III)

(ii).

Definition 4.5.6. (i) Let Tn,1 be the L -theory Tn together with φbr,n and the L -

sentence expressing the following statement about a ring: “every unit is a sum

of two zero divisors”.

(ii) Let Tn,2 be the L -theory Tn together with φbr,n and the L -sentence expressing

the following statement about a ring: “there exists a unit which is not a sum of

two zero divisors”.

Lemma 4.5.7. A |= Tn,1 if and only if A is a ring of type (n, 1) and A |= Tn,2 if and

only if A is a ring of type (n, 2).

Proof. By Lemma 4.5.5 and the equivalence (i) ⇔ (v) in Proposition 4.3.5.

Remark 4.5.8. (i) By [PS, pp. 5, 9], the L -theory of real closed rings has a recur-

sive axiomatization; in particular, both of the theories Tn,1 and Tn,2 also have

recursive axiomatizations.

(ii) By Lemma 4.2.9 (III) (ii), every minimal prime ideal is parametrically definable

in models of Tn,1 and in models of Tn,2, but minimal prime ideals cannot be

defined without parameters in models of either of these theories: for instance, if V

is a non-trivial real closed valuation ring with residue field k, then V ×kV |= T2,1

and the map V ×kV −→ V ×kV given by (a1, a2) 7→ (a2, a1) is an automorphism

which swaps the two minimal prime ideals.
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(iii) If A |= Tn,1, then bA = mA and thus the branching ideal bA is definable without

parameters. If A |= Tn,2, then bA ⊊ mA and the branching ideal bA is also

definable without parameters by the formula expressing the following about an

element a ∈ A: “a ∈ Ann(ai) + Ann(aj) for all non-zero pairwise orthogonal

a1, . . . , an ∈ A and for all i, j ∈ [n] such that i ̸= j” (see Lemma 4.2.9 (III) (ii)

and Lemma 4.4.7 (a)).

4.5.2 Model completeness

The core of this section consists of Theorems 4.5.15 and 4.5.21. The first key idea

for these model completeness results is that if A ⊆ B is an embedding (resp. a good

embedding, see Definition 4.4.16) of rings of type (n, 1) (resp. of rings of type (n, 2)),

then the corresponding embeddings Ai ⊆ Bi of non-trivial real closed valuation rings

(see Convention 4.4.13) are elementary in suitable expansions of the language of rings

(Proposition 2.3.13); the second key idea is using the first key idea together with

Lemma 4.5.11 to show that under some hypotheses, A is existentially closed in B

(Lemma 4.5.13 and Lemma 4.5.20), and then put everything together using Lemma

4.4.21 and Lemma 4.4.22.

Notation 4.5.9. Let {Ai}i∈I be a non-empty family of rings such that there exists

a ring B and surjective ring homomorphisms fi : Ai −↠ B for all i ∈ I, and set

A :=
∏

B,i∈IAi (see Notation 4.4.6); in particular, A is a subdirect product of
∏

i∈I Ai

with canonical projection maps pi : A −↠ Ai for all i ∈ I.

(i) If a ∈ A, then write ai := pi(a), and if r ∈ N≥2 and a ∈ Ar, then write

ai := (a1i, . . . , ari) ∈ Ari for all i ∈ I.

(ii) If F (x) ∈ A[x], then write Fi(x) for the polynomial in Ai[x] obtained by replacing

each coefficient a ∈ A appearing in F (x) by ai.

Remark 4.5.10. Let {Ai}i∈I and B be as in Notation 4.5.9 and set A :=
∏

B,i∈IAi.

If F (x) ∈ A[x1, . . . , xr] and a ∈ Ar, then F (a)i = Fi(ai) for all i ∈ I, therefore

A |= F (a) = 0 if and only if Ai |= Fi(ai) = 0 for all i ∈ I.

Lemma 4.5.11. Let {Ai}i∈I and B be as in Notation 4.5.9 and set A :=
∏

B,i∈IAi.

Let φ(x1, . . . , xr) be a quantifier-free L -formula with parameters from S ⊆ A, and
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a ∈ Ar be such that A |= φ(a). There exist quantifier-free L -formulas φa,i(x1, . . . , xr)

with parameters from Si := pi(S) ⊆ Ai (i ∈ I) such that

(i) A |= φ(a) if and only if Ai |= φa,i(ai) for all i ∈ I, and

(ii) if a′ ∈ Ar is such that Ai |= φa,i(a′i) for all i ∈ I, then A |= φ(a′).

Proof. Since φ(x1, . . . , xr) is quantifier-free and A |= φ(a), it can be assumed that φ

is of the form ∧∧
λ∈Λ

F+
λ (x) = 0 ∧∧ F−

λ (x) ̸= 0,

where Λ is a finite index set and F±
λ ∈ S[x1, . . . , xr] for all λ ∈ Λ. For each i ∈ I,

define φa,i(x1, . . . , xr) to be the L -formula (with parameters from Si)∧∧
λ∈Λ

F+
λi(x) = 0 ∧∧

∧∧
λ∈Λ

{F−
λi(x) ̸= 0 | Ai |= F−

λi(ai) ̸= 0};

note that for each i ∈ I, if Ai |= F−
λi(ai) = 0 for all λ ∈ Λ, then φa,i(x) is logically

equivalent to
∧∧

λ∈Λ F
+
λi(x) = 0. Items (i) and (ii) in the statement of the lemma now

follow by Remark 4.5.10 and by construction of the formulas φa,i(x1, . . . , xr).

Remark 4.5.12. The converse of item (ii) in Lemma 4.5.11 does not hold in general.

For example, let A := A1 ×k A2, where A1 and A2 are non-trivial local domains with

residue field k, φ(x) be the L -formula cx ̸= 0 with parameter c, where c := (c1, c2) ∈

A ⊆ A1×A2 is such that ci ∈ mAi
\{0}, and define a := (c1, 0) ∈ A; clearly A |= φ(a).

By the construction in the proof of Lemma 4.5.11, φa,1(x) is the L -formula c1x ̸= 0

with parameter c1, φa,2(x) is an empty conjunct (hence logically equivalent to x = x),

and clearly A |= φ(a) if and only if A1 |= φa,1(a1) and A2 |= φa,1(a2); but A |= φ(b)

and A1 ⊭ φa,1(b1) for b := (0, c2) ∈ A.

Model completeness for Tn,1

For the next lemma recall that any embedding A ⊆ B of models of Tn,1 is local

and it induces local embeddings Ai ⊆ Bi for all i ∈ [n], see Convention 4.4.13 and

Lemma 4.4.14; moreover, if A ⊆ B is sharp at bB (= mB), then (A/mA
∼=) Ai/mAi

∼=

Bi/mBi
(∼= B/mB) for all i ∈ [n], see Definition 4.4.18.

Lemma 4.5.13. Let A,B |= Tn,1 be such that A ⊆ B.
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(I) If A ⊆ B is sharp at bB (= mB), then A is existentially closed in B.

(II) If both A and B are homogeneous (Definition 4.4.19), then A is existentially

closed in B.

Proof. Let φ(x1, . . . , xr) be a quantifier-free L -formula with parameters from A and

let b ∈ Br be such that B |= φ(b); by Lemma 4.5.11 there exist quantifier-free L -

formulas φb,i(x1, . . . , xr) with parameters from Ai (i ∈ [n]) such that

(i) B |= φ(b) if and only if Bi |= φb,i(bi) for all i ∈ [n], and

(ii) if a ∈ Br is such that Bi |= φb,i(ai) for all i ∈ [n], then B |= φ(a).

(I). For each i ∈ [n] and each j ∈ [r], pick cji ∈ Ai such that cji/mAi
is the image

of bji/mBi
under the isomorphism Ai/mAi

∼= Bi/mBi
; since A,B |= Tn,1 and b ∈ Br,

it follows by choice of cji ∈ Ai that cj := (cj1, . . . , cjn) ∈ A for all j ∈ [r], and thus

c := (c1, . . . , cr) ∈ Ar. Again by choice of cji ∈ Ai and by item (i) above,

(Bi,mBi
) |= φb,i(bi) ∧∧

∧∧
j∈[r]

m(bji − cji);

since Ai ⊆ Bi is a local embedding for all i ∈ [n], by Proposition 2.3.13 (i) there exist

aji ∈ Ai (j ∈ [r]) such that

(Ai,mAi
) |= φb,i(ai) ∧∧

∧∧
j∈[r]

m(aji − cji)

for all i ∈ [n], where ai := (a1i, . . . ari). Once again by choice of cji ∈ Ai, aj :=

(aj1, . . . , ajn) ∈ A for all j ∈ [r], and thus a := (a1, . . . , ar) ∈ Ar ⊆ Br; since Ai |=

φb,i(ai) and φb,i(x) is quantifier-free, Bi |= φb,i(ai) for i ∈ [n], so by item (ii) above it

follows that B |= φ(a), and since A is a substructure of B and φ(x) is quantifier-free,

A |= φ(a) follows.

(II). Since A and B are homogeneous, it can be assumed that there exist non-trivial

real closed valuation rings V and W such that Ai = V and Bi = W for all i ∈ [n]; in

particular, bji ∈ W for all i ∈ [n] and j ∈ [r]. By item (i) above,

(W,mW ) |=
∧∧
i∈[n]

φb,i(b1i, . . . , bri) ∧∧
∧∧

j∈[r], i,i′∈[n]

m(bji − bji′),
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and since V ⊆ W is a local embedding, by Proposition 2.3.13 (i) there exist aji ∈ V

(i ∈ [n], j ∈ [r]) such that

(V,mV ) |=
∧∧
i∈[n]

φb,i(a1i, . . . , ari) ∧∧
∧∧

j∈[r], i,i′∈[n]

m(aji − aji′).

It follows that for each j ∈ [r], aj := (aj1, . . . , ajn) ∈ A and thus a := (a1, . . . , ar) ∈

Ar ⊆ Br; since V |= φb,i(ai) and φb,i(x) is quantifier-free, W |= φb,i(ai) for i ∈ [n], so

by item (ii) above it follows that B |= φ(a), and since A is a substructure of B and

φ(x) is quantifier-free, A |= φ(a) follows.

Remark 4.5.14. The proof of Lemma 4.5.13 (I) can be used mutatis mutandis to show

that given arbitary collections of non-trivial real closed valuation rings {Vi}i∈I and

{Wi}i∈I with Vi/mVi
∼= Wi/mWi

=: k and Vi ⊆ Wi for all i ∈ I, then
∏

k,i∈IVi is

existentially closed in
∏

k,i∈IWi.

Theorem 4.5.15. Tn,1 is model complete.

Proof. Combine Lemmas 4.5.13 and 4.4.21.

Model completeness for Tn,2

The main difference between embeddings of models of Tn,1 and embeddings of models of

Tn,2 is that every embedding A ⊆ B of models of Tn,1 is local (hence also bB∩A = bA),

but this is not the case for models of Tn,2 (i.e., not every embedding of models of Tn,2

is a good embedding, Example 4.4.15 and Definition 4.4.16); this fact, together with

the next lemma implies that Tn,2 is not model complete in the language of rings:

Lemma 4.5.16. Let A and B be local real closed rings of rank n such that A ⊆ B.

If A is existentially closed in B, then the embedding A ⊆ B is local and q ∩ A is a

branching ideal of A for every branching ideal q ∈ Spec(B).

Proof. That A ⊆ B must be a local embedding is clear. Let now a1, . . . , an ∈ A

be non-zero pairwise orthogonal elements, so that Specmin(A) = {AnnA(ai) | i ∈

[n]} and Specmin(B) = {AnnB(ai) | i ∈ [n]} (Corollary 4.2.11). Pick a branching

ideal q ∈ Spec(B); by Remark 4.3.6 there exist i, j ∈ [n] with i ̸= j such that

q = AnnB(ai)+AnnB(aj), therefore AnnA(ai)+AnnA(aj) ⊆ q∩A. Pick now b ∈ q∩A;

then

B |= ∃xy[xai = 0 ∧∧ yaj = 0 ∧∧ b = x+ y],
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and since ai, aj, b ∈ A and A is existentially closed in B, it follows that

A |= ∃xy[xai = 0 ∧∧ yaj = 0 ∧∧ b = x+ y],

therefore b ∈ AnnA(ai) +AnnA(aj) and thus q∩A = AnnA(ai) +AnnA(aj) ∈ Spec(A)

is a branching ideal.

Example 4.4.15 shows that there exist embeddings of models of Tn,2 which are not

local, and also that there exist embeddings of models of Tn,2 which do not map the

branching ideal to the branching ideal; in view of Lemma 4.5.16, to obtain model

completeness for Tn,2 one must enlarge the language of rings is such a way that every

embedding of models of Tn,2 in the resulting language is a good embedding.

Definition 4.5.17. (i) Let b and m be two unary predicates and define L ∗ :=

L (b, m).

(ii) Let T ∗
n,2 be the L ∗-theory Tn,2 together with the sentence expressing that b and

m are interpreted as the branching ideal (Remark 4.5.8 (iii)) and as the set of

non-units, respectively.

Remark 4.5.18. Let A :=
∏

C,i∈[n]Ai |= T ∗
n,2, so that A1, . . . , An and C are non-trivial

real closed valuation rings such that for each i ∈ [n] there exists a surjective ring

homomorphism Ai −↠ C onto a non-trivial real closed valuation ring C.

(i) For each i ∈ [n], Ai is regarded as an L ∗-structure in the canonical way, that

is, b(Ai) = bAi
:= ker(Ai ↠ C) and m(Ai) := mAi

; in particular, the projection

map A −↠ Ai is an L ∗-homomorphism.

(ii) Note that bA = bA1 × · · · × bAn and mA = mA1 × · · · ×mAn when bA and mA are

regarded as subsets of
∏n

i=1Ai; in particular, if F (x) ∈ A[x1, . . . , xr] and a ∈ Ar,

then A |= b(F (a)) if and only if Ai |= b(Fi(ai)) for all i ∈ [n], and A |= m(F (a))

if and only if Ai |= m(Fi(ai)) for all i ∈ [n] (cf. Remark 4.5.10).

Lemma 4.5.19. Let A :=
∏

C,i∈[n]Ai |= T ∗
n,2 and φ(x1, . . . , xr) be a quantifier-free L ∗-

formula with parameters from S ⊆ A, and a ∈ Ar be such that A |= φ(a). There exist

quantifier-free L ∗-formulas φa,i(x1, . . . , xr) with parameters from Si := pi(S) ⊆ Ai

(i ∈ [n]) such that
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(i) A |= φ(a) if and only if Ai |= φa,i(ai) for all i ∈ [n], and

(ii) if b ∈ Ar is such that Ai |= φa,i(bi) for all i ∈ [n], then A |= φ(b).

Proof. Analogous to the proof of Lemma 4.5.11 using Remark 4.5.18 (ii).

Lemma 4.5.20. Let A,B |= T ∗
n,2 be such that A ⊆ B as L ∗-structures.

(I) If A ⊆ B is sharp at bB, then A is existentially closed in B as an L ∗-structure.

(II) If both A and B are homogeneous, then A is existentially closed in B as an

L ∗-structure.

Proof. Analogous to the proof of Lemma 4.5.13 using Lemma 4.5.19 and Proposition

2.3.13 (ii).

Theorem 4.5.21. T ∗
n,2 is model complete.

Proof. Combine Lemmas 4.5.20 and 4.4.22.

4.5.3 Consequences of model completeness

The model companion of local real closed (SV-) rings of rank n

For the next result, recall that the class of local real closed rings of rank n is elementary

in the language of rings L ; explicitly, an axiomatization for this class of rings is given

by the axioms for local real closed rings ([PS]) together with the L -sentence φrk=n

defined in Lemma 4.5.1.

Corollary 4.5.22. Tn,1 is the model companion of Tn and also of the L -theory of

local real closed rings of rank n.

Proof. Combine Theorem 4.5.15, Lemma 4.4.10, and Proposition 4.4.12.

Example 4.5.23. Tn does not have the amalgamation property; in particular, Tn,1

is not the model completion of Tn ([CK90, Proposition 3.5.18]). Indeed, let V be a

non-trivial real closed valuation ring of Krull dimension at least 2 and with residue

field k, and let p be a non-zero non-maximal prime ideal of V . Define A :=
∏n

V/pV ,

B :=
∏n

Vp/pVp
Vp, and C :=

∏n
kV ; note in particular that A |= Tn,2, so that the

branching ideal bA of A is property contained in mA, and also B,C |= Tn,1. Clearly
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A ⊆ B,C, and if Tn has the amalgamation property, then by Corollary 4.5.22 there

exists D |= Tn,1 amalgamating B and C over A; by Lemma 4.4.14, B ∩mD = mB and

C ∩ mD = mC , but A ∩ mB = ker(A ↠ V/p) = bA and A ∩ mC = ker(A ↠ k) = mA,

therefore bA = A ∩mD = mA, a contradiction to bA ̸= mA.

Lemma 4.5.24. Let A |= Tn and B,C |= Tn,1 be such that A ⊆ B,C. If A ⊆ B and

A ⊆ C are local embeddings, then there exists D |= Tn,1 amalgamating B and C over

A.

Proof. Write Specmin(A) = {pA,i | i ∈ [n]}, Specmin(B) = {pB,i | i ∈ [n]}, and

Specmin(C) = {pC,i | i ∈ [n]}, and assume without loss of generality that pB,i ∩ A =

pA,i = pC,i ∩ A for all i ∈ [n] (Corollary 4.2.11). Since A ⊆ B and A ⊆ C are

local embeddings, A/pA,i ⊆ B/pB,i and A/pA,i ⊆ C/pC,i are local embeddings for all

i ∈ [n] (Remark 4.2.12), therefore by Lemma 2.3.14 there exist non-trivial real closed

valuation rings Vi amalgamating B/pB,i and C/pC,i over A/pA,i as L (m)-structures.

Since RCVR(m) is complete (Proposition 2.3.13 (i)), there exists a non-trivial real closed

valuation ring V with residue field k such that (Vi,mVi) ⊆ (V,mV ) for all i ∈ [n],

therefore it follows that the canonical composite embeddings

A ⊆ B ↪→
∏
i∈[n]

B/pB,i ⊆
∏
i∈[n]

Vi ⊆
∏
i∈[n]

V and A ⊆ C ↪→
∏
i∈[n]

C/pC,i ⊆
∏
i∈[n]

Vi ⊆
∏
i∈[n]

V

corestrict to composite embeddings A ⊆ B ↪→
∏n

k V and A ⊆ C ↪→
∏n

k V (respec-

tively) witnessing that
∏n

k V |= Tn,1 amalgamates B and C over A.

Proposition 4.5.25. Let Tn,1(m) and Tn(m) be the L (m)-theories Tn,1 and Tn together

with the sentence expressing that m is the set of non-units, respectively.

(i) The models of Tn(m) have prime extensions in the class of models of Tn,1(m).

(ii) Tn,1(m) is the model completion of Tn(m).

Proof. Note first that since Tn,1(m) is an extension by definitions of Tn,1 and this latter

theory is model complete, Tn,1(m) is also model complete.

(i). Let A |= Tn(m) and set Specmin(A) = {pi | i ∈ [n]}. By Lemma 4.4.10, A

embeds into A′ :=
∏

A/mA,i∈[n]A/pi |= Tn,1(m) as an L (m)-structure, and it is claimed

that A′ is the prime extension of A in the class of models of Tn,1(m). Let B |= Tn,1(m)
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and suppose that A ⊆ B as L (m)-structures; set Specmin(B) = {qi | i ∈ [n]}, so

that the canonical embedding B ↪−→
∏

i∈[n]B/qi corestricts to an isomorphism B ∼=∏
B/mB ,i∈[n]B/qi (Lemma 4.4.7 (b)); since the embedding A ⊆ B is local, it induces

local embeddings A/pi ⊆ B/qi for all i ∈ [n], from which it follows that the induced

embedding
∏

i∈[n]A/pi ↪−→
∏

i∈[n]B/qi restricts to an L (m)-embedding A′ ↪−→ B over

A.

(ii). By Corollary 4.5.22 and [CK90, Proposition 3.5.18] it suffices to show that if

B,C |= Tn,1(m) contain a common L (m)-substructure A ⊆ B,C such that A |= Tn(m),

then there exists D |= Tn,1(m) amalgamating B and C over A; the existence of such D

follows by Lemma 4.5.24.

Remark 4.5.26. Let T ′
n be the L -theory Tn together with the sentence expressing

that every non-unit is a sum of two zero divisors. By the equivalence (i) ⇔ (v) in

Proposition 4.3.5, models of T ′
n are local real closed SV-rings of rank n whose maximal

ideal is a branching ideal; clearly any model of Tn,1 is a model of T ′
n, therefore Tn,1

is also the model companion of T ′
n by Corollary 4.5.22. But in this case, Tn,1 is even

the model completion of T ′
n in the language of rings: indeed, if B,C |= Tn,1 contain

a common L -substructure A ⊆ B,C such that A |= T ′
n, then by Lemma 4.3.8 both

A ⊆ B and A ⊆ C are local embeddings, therefore by Lemma 4.5.24 there exists

D |= Tn,1 amalgamating B and C over A.

Completeness, decidability, and NIP

Corollary 4.5.27. The theories Tn,1 and Tn,2 are complete.

Proof. By Theorems 4.5.15 and 4.5.21 to prove completeness it suffices to show that

each of the theories Tn,1 and T ∗
n,2 have the joint embedding property; note that T ∗

n,2

is an extension by definitions of Tn,2, so completeness of T ∗
n,2 entails completeness of

Tn,2. Let A,B |= Tn,1; by Lemma 4.4.21, it can be assumed that both A and B are

homogeneous, so that there exist non-trivial real closed valuation rings V and V ′ with

residue fields k and k′, respectively, such that A =
∏n

kV and B =
∏n

k′V
′. Since

RCVR(m) is complete (Proposition 2.3.13 (i)), there exists a non-trivial real closed

valuation ring W with residue field l and local embeddings V, V ′ ⊆ W , from which it

follows that both A and B embed into
∏n

l W |= Tn,1; the joint embedding property
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for T ∗
n,2 follows in a similar manner appealing to Lemma 4.4.22 and Proposition 2.3.13

(ii).

Corollary 4.5.28. The theories Tn,1 and Tn,2 are decidable.

Proof. Since Tn,1 and Tn,2 are complete by Corollary 4.5.27 and recursively axiomati-

zable (Remark 4.5.8 (i)), they are decidable.

For the last result of this subsection, recall that if A is an NIP L1-structure

([Sim15]) and B is an L2-structure which is interpretable in A ([Hod93, Section 5.3]),

then B is also NIP.

Corollary 4.5.29. The theories Tn,1 and Tn,2 are NIP.

Proof. Since IP is preserved under elementary equivalence, it suffices to show by Corol-

lary 4.5.27 that
∏n

kV |= Tn,1 and
∏n

V/pV |= Tn,2 are NIP, where V is a non-trivial real

closed valuation ring of Krull dimension at least 2 with residue field k and p is a non-

zero non-maximal prime ideal of V . Since weakly o-minimal theories are NIP ([Sim15,

Appendix A.1.3]), RCVR(≤, div) is NIP by [Dic87, Corollary 1.6 (c)], therefore so is

V |= RCVR. By [Sim15, Proposition 3.23], the Shelah expansion V Sh is also NIP, and

since prime ideals of rings are externally definable ([dHJ24, Fact 4.1]), it follows that

both structures (V,mV ) and (V, p) are NIP; since
∏n

kV is interpretable in (V,mV ) and∏n
V/pV is interpretable in (V, p), it follows that both

∏n
kV and

∏n
V/pV are NIP, as

required.

Since all local real closed SV-rings of rank 2 have exactly one branching ideal, it

follows from the above that the L -theory of local real closed SV-rings of rank 2 splits

into two complete, decidable, and NIP L -theories, namely, the theories Tn,1 and Tn,2;

the results above together with this observation build up to the following:

Conjecture 4.5.30. The L -theory Tn of local real closed SV-rings of rank n ∈ N≥2

splits into finitely many complete, decidable, and NIP L -theories.

A proof of the above conjecture would rest in a good model-theoretic understanding

of arbitrary local real closed SV-rings of finite rank. Subsection 4.6.1 highlights some

of the key obstacles that arise in the model-theoretic analysis of such rings when there

are two or more branching ideals; based on the results in this section, Conjecture 4.6.9
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gives candidates for what each of the finitely many completions of Tn mentioned in

Conjecture 4.5.30 could be.

4.5.4 Quantifier elimination for Tn,1

For this last section recall that any real closed ring A is an f -ring (A,∨,∧,≤), and

since a ≥ 0 in A if and only if a is a square, the partial order ≤ on A is definable,

and thus so are the lattice operations ∨ and ∧. In particular, any L -theory T of

real closed rings can be regarded as an L (∨,∧,≤)-theory via extension by definitions;

moreover, if A ⊆ B is an L -embedding of real closed rings, then A ⊆ B is also an

L (∨,∧,≤)-embedding (the proof of this fact is contained in [PS, p. 11]). The next

example, which is inspired by the example in [PS, p. 19], shows failure of quantifier

elimination for the theory Tn,1 in various languages.

Example 4.5.31. If L ′ is any language such that L ⊆ L ′ ⊆ L (∨,∧,≤, div), then

Tn,1 does not have quantifier elimination in L ′; for notational simplicity only the case

n = 2 will be considered here, but the construction can be easily adapted for arbitrary

n ∈ N≥2. Assume for contradiction that T2,1 has quantifier elimination in L ′ and let

V be a non-trivial real closed valuation ring of Krull dimension at least 2 with residue

field k. Let p be a non-zero non-maximal prime ideal of V , and define B := V ×kV and

C := V ×kV/p; then the maps εB : V −→ B and εC : V −→ C given by εB(v) := (v, v)

and εC(v, v/p) are L ′-embeddings, and since T2,1 is model complete (Theorem 4.5.15)

there exist D |= T2,1 and L ′-embeddings fB : B ↪−→ D and fC : C ↪−→ D such that

the diagram

V

B

C

D

εB

εC

fC

fB

commutes ([CK90, Proposition 3.5.19]). Pick η ∈ mV \p; then b := (0, η) ∈ B and b′ :=

(η, 0) ∈ B are non-zero orthogonal elements, and c := (0, η/p) ∈ C and c′ := (η, 0/p) ∈

C are non-zero orthogonal elements, therefore Specmin(B) = {AnnB(b),AnnB(b′)},

Specmin(C) = {AnnC(c),AnnC(c′)} and

Specmin(D) = {AnnD(b),AnnD(b′)} = {AnnD(c),AnnD(c′)}
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by Corollary 4.2.11. But then

Spec(fB ◦ εB)(AnnD(b)) = Spec(fB ◦ εB)(AnnD(b′)) = Spec(fC ◦ εC)(AnnD(c′)) = (0)

and Spec(fC ◦ εC)(AnnD(c)) = p, therefore the square of Zariski spectra induced by

the commutative square above does not commute, giving the required contradiction.

The example above shows that Tn,1 fails to have quantifier elimination in any

language L ′ such that L ⊆ L ′ ⊆ L (∨,∧,≤, div) due to the fact that any L ′-

structure A such that A |= Tn,1 has L ′-substructures of smaller rank; enlarging the

language to force all substructures to have rank n turns out to be sufficient to obtain

quantifier elimination.

Definition 4.5.32. Let e1, . . . , en be new constant symbols and let L † := L (∨,∧,≤

, div, e1, . . . , en). Define T †
n,1 to be the canonical extension by definitions of Tn,1 to

L (∨,∧,≤, div) together with the statement expressing that e1, . . . , en are non-zero

and pairwise orthogonal elements.

Theorem 4.5.33. T †
n,1 has quantifier elimination.

Proof. Let A,B,C |= (T †
n,1)∀ be such that A ⊆ B,C as L †-structures. Since Tn,1 is

model complete by Theorem 4.5.15, so is T †
n,1, therefore it suffices to show that there

exists D |= T †
n,1 amalgamating B and C over A as L †-structures; moreover, since

B,C |= (T †
n,1)∀, it can be assumed that B,C |= T †

n,1.

Claim 1. A is a reduced local SV-f -ring of rank n (see [Sch10b, Definition 4.1]).

Proof of Claim 1. A is a reduced f -ring by the equivalence (i) ⇔ (ii) in [BKW77,

Theoreme 9.1.2], and A is local because B is local and this property can be expressed by

the universal L †-sentence ∀x[div(x, 1) or div(1− x, 1)]. Since A is reduced and local,

its rank is the supremum of the lengths of sequences of non-zero pairwise orthogonal

elements (Lemma 4.2.9 (III) (i)), and as A is an L †-substructure of B |= T †
n,1, it follows

that rk(A) = n; finally, A is an SV-ring by Lemma 4.5.2, and A has bounded inversion

because B has bounded inversion ([SM99, Proposition 12.4]) and this property can

be expressed by the universal L †-sentence ∀x[1 ≤ x → div(x, 1)], therefore A is an

SV-f -ring by [DM95, Proposition 3.2] and [Sch10a, Proposition 3.3]. □Claim 1

Set pA,i := AnnA(ai), pB,i := AnnB(ai), and pC,i := AnnC(ai) for all i ∈ [n], where

each ai ∈ A is the interpretation of the constant symbol ei ∈ L †, so that Specmin(A) =
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{pA,i | i ∈ [n]}, Specmin(B) = {pB,i | i ∈ [n]}, and Specmin(C) = {pC,i | i ∈ [n]} by

Corollary 4.2.11. Since pA,i is a minimal prime ideal of the reduced f -ring A, pA,i an

irreducible ℓ-ideal ([BKW77, Sections 8.4 and 8.5, Theoreme 9.3.2]), therefore A/pA,i

is a totally ordered domain and the residue map A −↠ A/pA,i a homomorphism of

lattice-ordered rings (see also [SM99, pp. 31–33]).

Claim 2. The ring embeddings A/pA,i ⊆ B/pB,i, C/pC,i are L (≤, m)-embeddings for

all i ∈ [n].

Proof of Claim 2. The L †-embeddings A ⊆ B,C are local embeddings (Remark

2.3.12), therefore they induce local embeddings A/pA,i ⊆ B/pB,i, C/pC,i for all i ∈ [n]

(Remark 4.2.12), and thus it remains to show that these latter embeddings are L (≤)-

embeddings. Pick a ∈ A; then a ∨ 0 ∈ A ⊆ B, (a ∨ 0)/pA,i = (a/pA,i) ∨ (0/pA,i), and

(a∨0)/pB,i = (a/pB,i)∨ (0/pB,i), from which it follows that a/pA,i ≥ 0/pA,i if and only

if a/pB,i ≥ 0/pB,i, as required. □Claim 2

By Claim 1 and by the above, A/pA,i is a totally ordered valuation ring for all i ∈

[n], and since B,C |= T †
n,1, B/pB,i and C/pC,i are non-trivial real closed valuation rings,

therefore by Claim 2 and Lemma 2.3.14 there exist non-trivial real closed valuation

rings Vi and local embeddings B/pB,i, C/pC,i ⊆ Vi such that the diagram

A/pA,i

B/pB,i

C/pC,i

Vi

commutes for all i ∈ [n]. Amalgamate all Vi into a single non-trivial real closed

valuation ring V with residue field k in such a way that all the embeddings Vi ⊆ V

are local and define D0 :=
∏n

kV |= Tn,1. Note that ai ∈ pA,j if and only if j = i for

all i, j ∈ [n] and the images of ai/pA,i and ai/pC,i in V coincide; it follows that the

ring D0 can be expanded to a model D |= T †
n,1 in such a way that the composite local

embeddings B/pB,i ⊆ Vi ⊆ V and C/pC,i ⊆ Vi ⊆ V induce L †-embeddings B ⊆ D

and C ⊆ D (note that the ring embeddings B,C ⊆ D are L (div)-embeddings by
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Theorem 4.5.15) making the diagram

A

B

C

D

commute, concluding thus the proof.

4.6 Beyond one branching ideal

The aim of this section is twofold. To start with, Subsection 4.6.1 contains the key

difficulties that arise in trying to carry the same model-theoretic analysis as done

in Section 4.5 to those local real closed SV-rings of finite rank which have two or

more branching ideals; then, Subsection 4.6.2 introduces the notion of the branching

spectrum of a local real closed ring of finite rank in order to connect the results of

the previous section with the model theory of real closed rings with radical relations

as developed in [PS] (see also [Gui25]) with a view towards overcoming the obstacles

described Subsection 4.6.1 as well as laying down the path towards a possible proof of

Conjecture 4.5.30.

As in Section 4.5, fix n ∈ N≥2 for what remains; all model-theoretic statements are

again assumed to be phrased with respect to the language of rings L unless stated

otherwise.

4.6.1 Difficulties with two or more branching ideals

A recurring theme in the study of real closed rings is that their Zariski spectrum serves

as a rough measure of their complexity, and this has already been seen in the previous

two sections with the differences between rings of type (n, 1) and of type (n, 2). Note

that by Remarks 4.3.2 (ii) and 4.3.7, a local real closed ring of rank 2 has exactly one

branching ideal, and if A is a local real closed ring of rank 3, then all the possible

configurations of its minimal prime ideals, branching ideals, and its maximal ideal can

be summarized in the following four Hasse diagrams, where the dotted lines indicate

that there could be more prime ideals between the two nodes that each dotted line

connects:
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mA

p1 p2 p3

mA

bA

p1 p2 p3

mA

q

p1 p2 p3

mA

q2

q1

p1 p2 p3

If A is furthermore an SV-ring, then the fist diagram indicates that A is a ring

of type (3, 1), and the second diagram indicates that A is a ring of type (3, 2). The

fact that in the two diagrams on the left there is exactly one branching ideal creates

a situation of “symmetry” that has been heavily exploited in Section 4.5, namely, the

model-theoretic analysis of rings of type (n, j) (j ∈ [2]) is done in terms of the model

theory of each of the residue domains A/p1, . . . , A/pn (Specmin(A) = {pi | i ∈ [n]}),

where each of these domains are all canonically regarded as structures in the same

language (L (m) if j = 1 and L (b, m) if j = 2, see Subsection 4.5.2) and can therefore

be easily compared and manipulated as models of a suitable theory (RCVR(m) if j = 1

and RCVR(b, m) if j = 2).

This “symmetry” can break in the presence of more than one branching ideal.

In particular, two residue domains A/pi and A/pj may carry information about a

different number of prime ideals of A, and thus capturing this information via unary

predicates leads to different languages (e.g., in the case of the third diagram, A/p2 can

be canonically regarded as an L (b, m)-structure, but A/p3 may not, although the latter

can be canonically regarded as an L (m)-structure); the fact that the residue domains

A/pi may not be all canonically regarded as structures in the same language in the

way described above creates an inherent difficulty in the model-theoretic analysis of

local real closed SV-rings of finite rank in terms of the domains A/pi when there is

more than one branching ideal.

There are also differences in terms of definability in the presence of more than

one branching ideal. One fact about local real closed rings A of finite rank with one

branching ideal bA that was used in the proof of completeness of Tn,2 (Corollary 4.5.27)

is that bA is definable in A without parameters (Remark 4.5.8 (iii)); the next example

shows that branching ideals are generally not definable without parameters in local

real closed rings of finite rank which have more than one branching ideal:
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Example 4.6.1. Let V be a real closed domain of Krull dimension 2 and let p be a

non-zero non-maximal prime ideal. Define A1 = A2 := V ×V/p V , noting that A1 is a

local real closed ring of rank 2 with unique branching ideal ker(A1 ↠ V/p) and with

residue field V/mV =: k . The ring A := A1 ×k A2 ⊆ A1 × A2 is a local real closed

ring of rank 4 with exactly 3 branching ideals, namely q1 := ker(A ↠ A1 ↠ V/p),

q2 := ker(A ↠ A2 ↠ V/p), and mA = ker(A ↠ k); if Specmin(A) = {p1, . . . , p4}, then

the Hasse diagram of (Spec(A),⊆) is
mA

q1

p1 p2

q2

p3 p4

and the map (a1, a2) 7→ (a2, a1) is an automorphism of A ⊆ A1 × A2 which swaps q1

and q2.

Finally, recall that given a real closed valuation ring C, there always exists a

non-trivial real closed valuation ring W with homomorphic image C yielding the ho-

mogeneous ring
∏n

CW of type (n, j) (if C is a field, then j = 1, otherwise j = 2),

see Definition 4.4.19; loosely speaking, for any fixed “cofactor” C one can find a “fac-

tor” W yielding a ring of type (n, 1) or of type (n, 2) having the property that all its

residue domains modulo minimal prime ideals are abstractly isomorphic to W . The

model-theoretic relevance of this construction is that one can make the property of a

tuple a ∈ W n being an element of
∏n

CW “internal to W”, in the sense that a ∈
∏n

CW

if and only if ai − aj ∈ ker(W ↠ C) for all i, j ∈ [n]; this was crucially used in the

model completeness proof of Tn,1, see Lemma 4.5.13 (II). Although it is easy to see

that this construction can be done for all local real closed SV-rings of rank 3, the next

example shows that this is not any more the case in the presence of two incomparable

branching ideals (the precise statement is Claim 2 in the example below):

Example 4.6.2. Let k be a real closed field and Γ be a divisible totally ordered

abelian group without a smallest non-zero convex subgroup (for instance, Γ can be

taken to be QN ordered lexicographically); in particular, V1 := k[[Γ]] is a non-trivial

real closed valuation ring without a largest non-maximal prime ideal, i.e., mV1 does

not have an immediate predecessor in (Spec(V1),⊆). Let V2 := k[[Q]], noting that

Spec(V2) = {(0),mV2}.
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Claim 1. There does not exist a surjective ring homomorphism f : V1 −↠ V2 nor a

surjective ring homomorphism g : V2 −↠ V1.

Proof of Claim 1. Assume for contradiction that either f or g as in the statement

of the claim exist. Note that since f and g are surjective, either Spec(V2) is a final

segment in (Spec(V1),⊆) or Spec(V1) is a final segment in (Spec(V2),⊆), respectively;

but this is impossible by choice of V1 and V2. □Claim 1

Claim 2. There does not exist a non-trivial real closed valuation ring W having both

V1 and V2 as homomorphic images; in particular, there is no local real closed SV-ring

of rank 4 of the form (W ×V1 W )×k (W ×V2 W ).

Proof of Claim 2. Assume for contradiction that there exist surjective ring homo-

morphisms f1 : W −↠ V1 and f2 : W −↠ V2; since W is a valuation ring, either

ker(f1) ⊆ ker(f2) or ker(f2) ⊆ ker(f1), therefore either V2 is a homomorphic image of

V1 or V1 is a homomorphic image of V2, a contradiction to Claim 1. □Claim 2

4.6.2 The branching spectrum

Although individual branching ideals in an arbitrary local real closed ring A of finite

rank are generally not definable without parameters (Example 4.6.1), the theory of A

“knows” about the poset configuration of its branching ideals in a sense which is made

precise in Corollary 4.6.8. First, some preliminaries are needed.

Definition 4.6.3. Let A be a local real closed ring of finite rank. Define the branching

spectrum of A to be

BrSpec(A) := Specmin(A) ∪ {mA} ∪ {p ∈ Spec(A) | p is a branching ideal}.

Definition 4.6.4. Let (P,⊑) be a root system, i.e., (P,⊑) is a poset such that the

principal up-set p↑ := {q ∈ P | p ⊑ q} is a chain for all p ∈ P .

(I) q ∈ P is a branching point if there exist p1, p2 ∈ P distinct from q such that

p1, p2 ⊑ q, and {q} = (p↑1 ∩ p
↑
2)

min 4.

(II) P is a root if there exists an element ⊤ ∈ P such that p ⊑ ⊤ for all p ∈ P (note

that if such element exists, it must be unique).

4If S ⊆ (P,⊑) is any subset, define Smin := {s ∈ S | s is minimal in S with respect to ⊑}.
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(III) Suppose that P is a finite root (i.e., P is a finite root system with unique maximal

element).

(i) The rank of P is rk(P ) := |Pmin|.

(ii) The branching root of P is the subposet

Br(P ) := Pmin ∪ {⊤} ∪ {p ∈ P | p is a branching point}.

(iii) P is reduced if P = Br(P ), i.e., P is reduced if every p ∈ P \ (Pmin ∪ {⊤})

is a branching point.

Remark 4.6.5. (i) Any finite root is a ∨-semilattice with join operation given by

p1 ∨ p2 := (p↑1 ∩ p
↑
2)

min.

(ii) By Remark 4.3.7, local real closed rings of finite rank have finitely many branch-

ing ideals; in particular, the poset (BrSpec(A),⊆) is a finite reduced root.

If (P,⊑) is a finite root system, then there exists a real closed ring A such that

(Spec(A),⊆) ∼= (P,⊑). Indeed, by [DG00] there exists a ring B such that (Sper(B),⊆

) ∼= (P,⊑), where Sper(B) is the real spectrum of B, see Subsection 2.2.1; then

(Spec(A),⊆) ∼= (P,⊑), where A := ρ(B) is the real closure of B, see [DST19, Section

13.6.3] and the references therein. The next lemma shows that one can in fact choose

A to be a real closed SV-ring:

Lemma 4.6.6. Let (P,⊑) be a finite root system. There exists a real closed SV-ring

A such that (Spec(A),⊆) ∼= (P,⊑).

Proof. First note that it suffices to prove the statement for finite roots. Indeed, if

(P,⊑) is any finite root system, then P = P1 ∪̇ . . . ∪̇ Pm, where each (Pi,⊑) is a

finite root; if Ai is a real closed SV-ring such that (Spec(Ai),⊆) ∼= (Pi,⊑) for all

i ∈ [m], then A := A1× · · ·×Am is a real closed SV-ring (by Proposition 4.2.4 (i) and

Theorem 2.3.2 (I)) such that (Spec(A),⊆) ∼= (P,⊑).

The proof is now by induction on the rank of finite roots (P,⊑). If rk(P ) = 1,

then (P,⊑) is a chain of n elements for some n ∈ N, therefore choosing A to be a real

closed valuation ring of Krull dimension n − 1 does the job. Let k ∈ N and assume

that the statement holds for all finite roots of rank k. Let (P,⊑) be a finite root of
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rank k + 1 with minimal elements p1, . . . , pk, pk+1. Choose i ∈ [k + 1] such that p↑i

is a chain of maximal cardinality n ∈ N in (P,⊑), pick any j ∈ [k + 1] \ {i}, and

define P ′ :=
⋃
ℓ∈[k+1]\{j} p

↑
ℓ ⊆ P ; then (P ′,⊑) is a finite root of rank k, and thus by

inductive hypothesis there exists a real closed SV-ring A′ and a poset isomorphism

f : (P ′,⊑) −→ (Spec(A′),⊆). Define V := A′/f(pi) (noting that V is a real closed

valuation ring of Krull dimension n − 1) and q := pi ∨ pj (Remark 4.6.5 (i)); then

|p↑j | := m ≤ n by assumption on p↑i , and this yields two possible cases:

- m = n. In this case, (Spec(A),⊆) ∼= (P,⊑) for A := A′ ×B/f(q) B, see [DST19,

Section 12.5.7].

- m < n. In this case, (Spec(A),⊆) ∼= (P,⊑) for A := A′ ×B/f(q) B/f(r), where

r ∈ p↑i is such that |r↑| = m.

In each of the cases above, A is a real closed SV-ring by Proposition 4.2.4 (iv) and

Theorem 2.3.2 (I); this concludes the inductive step and thus the proof.

Lemma 4.6.7. Let (P,⊑) be a finite reduced root of rank at least 2. There exists an

L -sentence φ(P,⊑) such that

A |= φ(P,⊑) ⇐⇒ (BrSpec(A),⊆) ∼= (P,⊑)

for all local real closed rings A of finite rank.

Proof. This is clear from combining Lemma 4.5.1 together with the following facts

about a local real closed ring A of rank n ∈ N≥2:

(i) Specmin(A) = {Ann(ai) | i ∈ [n]} for all non-zero pairwise orthogonal elements

a1, . . . , an ∈ A (Lemma 4.2.9 (III) (ii));

(ii) each branching ideal of A is a sum of two distinct minimal prime ideals (Remark

4.3.6); and

(iii) the maximal ideal is a branching ideal if and only if every non-unit is a sum of

two zero divisors (Proposition 4.3.5).

More precisely, assume without loss of generality that (P,⊑) is a finite reduced root

of rank n ∈ N≥2 such that ⊤ is a branching point. Then φ(P,⊑) can be taken to be
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the conjunction of: φrk=n (Lemma 4.5.1), the L -sentence expressing “every non-unit

is a sum of two zero divisors”, and the L -sentence expressing “there exist non-zero

orthogonal elements a1, . . . , an ∈ A such that ({Ann(ai) | i ∈ [n]} ∪ {Ann(ai) +

Ann(aj) | i, j ∈ [n]},⊆) is poset-isomorphic to (P,⊑)”. For instance, if (P,⊑) is the

finite reduced root

⊤

•

p1 p2 p3

then the last L -sentence described above would be the one expressing “there exist

non-zero pairwise orthogonal elements a1, a2, a3 ∈ A such that Ann(a1) + Ann(a3) =

Ann(a2) + Ann(a3) and Ann(a1) + Ann(a2) ⊊ Ann(a2) + Ann(a3)”.

Corollary 4.6.8. Let A and B be local real closed rings of finite rank. If A ≡ B, then

(BrSpec(A),⊆) ∼= (BrSpec(B),⊆).

Proof. Immediate from Lemma 4.6.7.

Let A and B are local real closed SV-rings of finite rank n ∈ N≥2 with one branching

ideal and suppose that (BrSpec(A),⊆) ∼= (BrSpec(B),⊆); then A is of type (n, j)

(j ∈ [2]) if and only if B is of type (n, j), therefore A ≡ B by Corollary 4.5.27. This

observation gives rise to the following conjecture on an elementary classification of

local real closed SV-rings of finite rank:

Conjecture 4.6.9. Let A and B be local real closed SV-rings of finite rank. Then

A ≡ B if and only if (BrSpec(A),⊆) ∼= (BrSpec(B),⊆).

If A is a local real closed ring of finite rank, then BrSpec(A) is a finite subset of the

spectral space Spec(A), and as such, BrSpec(A) is proconstructible in Spec(A) (i.e.,

it is a spectral subspace of Spec(A), see Section 2.2); in particular, A corresponds to

the radical relation ⪯BrSpec(A)⊆ A2 on A. Radical relations on rings are certain binary

relations which were introduced in [PS90] and later used in [PS] for the model-theoretic

analysis of real closed rings. It is shown in [PS] that if A is any real closed ring, then

X ⊆ Spec(A) 7−→ a ⪯X b
def⇐⇒ ∀p ∈ X[b ∈ p ⇒ a ∈ p]
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is a bijection between proconstructible subsetsX ⊆ Spec(A) and radical relations ⪯ on

A, therefore a real closed ring with a radical relation (A,⪯X) “knows” about the spec-

tral space X since the bounded and distributive lattice K(X) of closed constructible

subsets of X is interpretable in (A,⪯X); furthermore, the model theory of real closed

valuation rings with radical relations is well-understood from the work carried in the

last three sections of [PS]. In view of all of the above, a possible approach to a uniform

model-theoretic analysis of all local real closed SV-rings of finite rank and to answer

Conjecture 4.5.30 in the affirmative is to study such rings equipped with the radical

relation corresponding to their branching spectrum.
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Appendix A

Embedding Real Closed Valued

Fields

The aim of this section is proving Theorem A.5. Familiarity with the basic notions

and properties of valued fields is assumed throughout (see for example [EP05, Chapter

2] or [ADH17, Chapter 3]), as well as familiarity with ordered and real closed fields;

in what follows, the notation and conventions used for this appendix are fixed.

A valuation on a field K is a function v : K −↠ Γ ∪ {∞}, where Γ is a totally

ordered abelian group and ∞ is a symbol satisfying γ <∞ for all γ ∈ Γ, such that

(i) v(a) = ∞ if and only if a = 0,

(ii) v(ab) = v(a) + v(b), and

(iii) min{v(a), v(b)} ≤ v(a+ b).

Every valuation on a field K is denoted by v, with the exception of the canonical

valuation on fields of Hahn series k((Γ)), in which case the valuation is denoted by

ν, see Theorem 2.3.8; in particular, if K ⊆ L is an extension of valued fields, then

the valuation on L is v and the valuation on K is v↾K . If K is a valued field, then

VK := {a ∈ K | v(a) ≥ 0} is the corresponding valuation ring and λK : V −↠ V/mK

is the residue field map, where mK := {a ∈ K | v(a) > 0} is the unique maximal ideal

of VK ; write V := VK , m := mK , and λ := λK if K is clear from the context.

An ordered valued field is a totally ordered field K together with an order-

compatible valuation (also called convex valuation) v : K −↠ Γ ∪ {∞}, i.e., for

180
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all a, b ∈ K, if 0 < a < b, then v(b) ≤ v(a). If K is a totally ordered field and

v : K −↠ Γ ∪ {∞} is a valuation on K, then the following are equivalent:

(i) v : K −↠ Γ ∪ {∞} is an order-compatible valuation.

(ii) V is convex in K.

(iii) The composite map K>0 ↠ Γ ↠ Γop given by a 7→ −v(a) is a surjective mor-

phism of totally ordered groups, where Γop denotes the totally ordered group

obtained by reversing the order of Γ; in particular, ker(v↾K>0) is a multiplicative

convex subgroup of K>0.

Since convex subrings of totally ordered fields are valuation rings ([KS22, Proposition

2.2.4]), ordered valued fields can be equivalently defined as pairs (K,V ), where K is an

ordered field and V ⊆ K is a convex subring; in particular, if K is an ordered valued

field, then its residue field k := V/m is endowed with a canonical total order turning

it into a totally ordered field in such a way that the residue field map λ : V −↠ k is

order-preserving.

A real closed valued field is an ordered valued field which is real closed as a field,

i.e., it is a real closed field equipped with an order-compatible valuation; equivalently,

it is a real closed field with a distinguished convex subring. If K is an ordered valued

field, then its real closure ρ(K) will be regarded as a real closed valued field with the

valuation induced by K, i.e., Vρ(K) is defined as the convex hull of VK in ρ(K); if the

value group and the residue field of K are Γ and k (respectively), then the value group

and the residue field of ρ(K) are QΓ and ρ(k) (respectively), and the field embedding

ρK : K ↪−→ ρ(K) is an embedding of valued fields, see [ADH17, Corollary 3.5.18]. Any

isomorphism of ordered valued fields K −→ L extends uniquely to an isomorphism

of valued fields ρ(K) −→ ρ(L), which is also order-preserving since ρ(K) and ρ(L)

are real closed; therefore, if R is a real closed valued field and ε : K ↪−→ R is an

embedding of ordered valued fields, then ε can be extended uniquely to an embedding

of valued fields ρ(K) ↪−→ R.

Lemma A.1. Let K be a real closed valued field with value group Γ and G ⊆ K>0 be

a subgroup. The following are equivalent:

(i) G is a monomial group of K, i.e., v↾G : G −→ Γ is a group isomorphism.
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(ii) G is a subgroup of K>0 maximal with G ∩ ker(v↾K>0) = (1).

In particular:

(a) Every real closed valued field has a monomial group.

(b) If K ⊆ L is an extension of real closed valued fields and G is a monomial group

of K, then there exists a monomial group H of L containing G.

Proof. (i) ⇒ (ii). Since v↾G is injective, G∩ker(v↾K>0) = (1). Assume for contradiction

that there exists a subgroup G ⊊ G′ ⊆ K>0 with G′ ∩ ker(v↾G′) = (1) and pick

g′ ∈ G′ \ G; since v↾G is surjective, there exists g ∈ G with v(g) = v(g′), hence

g′g−1 ∈ G′ ∩ ker(v↾K>0) = (1), and thus g′ = g, a contradiction to the choice of g′.

(ii) ⇒ (i). Since v is an order-compatible valuation on K, ker(v↾K>0) is a convex

subgroup of K>0; since K is real closed, K>0 is multiplicatively divisible (i.e., it has

nth roots for every positive integer n), and thus ker(v↾K>0) is a divisible subgroup of

K>0. By [Fuc70, Theorem 21.2] and by assumption on G, K>0 = ker(v↾K>0) · G, i.e.,

v↾G : G −→ Γ is a group isomorphism, as required.

Items (a) and (b) follow from the implication (ii) ⇒ (i) and an application of Zorn’s

lemma.

Lemma A.2. Let K be a real closed valued field with residue field k and k0 ⊆ V be a

subfield. The following are equivalent:

(i) k0 is a coefficient field of K, i.e., λ↾k0 : k0 −→ k is a field isomorphism.

(ii) k0 is a maximal subfield of V .

In particular:

(a) Every real closed valued field has a coefficient field.

(b) If K ⊆ L is an extension of real closed valued fields and k0 is a coefficient field

of K, then there exists a coefficient field l0 of L containing k0.

Proof. (i) ⇒ (ii). Assume for contradiction that there exists a subfield k0 ⊊ k′ ⊆ V

and pick a′ ∈ k′ \ k0; since λ↾k0 is surjective, there exists a ∈ k0 with λ(a) = λ(a′),

hence a− a′ ∈ k′ ∩m = (0), and thus a′ = a, a contradiction to the choice of a′.



APPENDIX A. REAL CLOSED HAHN SERIES FIELDS 183

(ii) ⇒ (i). Folklore; see for instance [KS22, Proposition 2.5.3] or [Sch09, Proposition

2.1].

Items (a) and (b) follow from the implication (ii) ⇒ (i) and an application of Zorn’s

lemma.

Lemma A.3. Let K be an ordered valued field with value group Γ and residue field

k, and suppose that G ⊆ K>0 is a monomial group of K. If ε : K ↪−→ k((Γ)) is an

embedding of valued fields such that ε(g) = xv(g) for all g ∈ G, then ε preserves the

order.

Proof. Let r ∈ K>0, assume without loss of generality that r ∈ V (otherwise replace

r by r−1), and write

ε(r) := aγ0x
γ0 +

∑
aγx

γ,

where γ0 := ν(ε(r)) = v(r) ∈ Γ; it must be shown that ε(r) > 0, i.e., that aγ0 > 0.

Let g ∈ G be such that v(g) = γ0; then 0 = v(rg−1) = ν(ε(rg−1)), and

ε(rg−1) = ε(r)ε(g−1) = aγ0 +
∑

aγx
γ−γ0 ∈ k[[Γ]],

therefore 0 ̸= aγ0 = λk((Γ))(ε(rg
−1)) = λK(rg

−1), and since g > 0, r > 0, and λK :

V −↠ k is order-preserving, aγ0 = λK(rg
−1) > 0 follows, as required.

Theorem A.4. Let K be a real closed valued field with value group Γ and residue field

k. Suppose that G ⊆ K>0 is a monomial group of K and k0 ⊆ V is a coefficient field of

K. There exists an embedding of valued fields ε : K ↪−→ k((Γ)) such that ε(g) = xv(g)

for all g ∈ G and ε(a) = λ(a) for all a ∈ k0.

Proof. See [Pri83, Satz 21, p. 62].

Theorem A.5. Let K ⊆ L be an extension of real closed valued fields with value

groups Γ and ∆, and residue fields k and l, respectively. There exist embeddings of

valued fields εK : K ↪−→ k((Γ)) and εL : L ↪−→ l((∆)) such that εL↾K = εK.

Proof. Let G ⊆ K>0 be a monomial group of K, H ⊆ L>0 be a monomial group of L

containing G, k0 ⊆ VK be a coefficient field of K, and l0 ⊆ VL be a coefficient field of

L containing k0; these exist by items (a) and (b) in Lemmas A.1 and A.2.

Claim. K>0 ∩H = G and K ∩ l0 = k0.
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Proof of Claim. Clearly G ⊆ K>0 ∩H and k0 ⊆ K ∩ l0. Since K ⊆ L as valued fields,

ker(v↾K>0) ⊆ ker(v↾L>0), and since H is a monomial group of L, H ∩ ker(v↾L>0) =

(1); therefore H ∩ ker(v↾K>0) = (1), hence (K>0 ∩ H) ∩ ker(v↾K>0) = (1), and thus

K>0 ∩H = G by the implication (i) ⇒ (ii) in Lemma A.1. Similarly, since K ⊆ L as

valued fields, K ∩ VL = VK , hence k0 ⊆ K ∩ l0 ⊆ K ∩ VL = VK , and thus k0 = K ∩ l0

by the implication (i) ⇒ (ii) in Lemma A.2. □Claim

By Theorem A.4, there exists an embedding of valued fields εK : K ↪−→ k((Γ))

such that ε(g) = xv(g) for all g ∈ G and ε(a) = λ(a) for all a ∈ k0; the goal is to extend

εK to an embedding of valued fields εL : L ↪−→ l((∆)). If the extension K ⊆ L is

immediate (that is, ifK and L have the same value groups and the same residue fields),

then G = H, k 0 = l0, and k((Γ)) = l((∆)), therefore the existence of an embedding of

valued fields εL : L ↪−→ l((∆)) such that εL↾K = εK follows by [Kap42, Theorem 5].

Suppose now that the extension K ⊆ L is not immediate; by induction it suffices to

consider the case L := K⟨r⟩, where r ∈ L \ K and K⟨r⟩ := ρ(K(r)) (note that any

such r is transcendental over K, as otherwise the field generated by K ∪ {r} in L is a

proper real algebraic extension of K, contradicting the fact that K is real closed). By

the Wilkie inequality ([Dri97, Corollary 5.6]), there are two cases to consider:

Case 1. k = l (hence k0 = l0) and there exists δ ∈ ∆\Γ such that ∆ = Γ⊕Qδ. Let

h ∈ H be such that v(h) = δ, so that h ∈ H\G andH = G·hQ. SinceK>0∩H = G and

h /∈ G, it follows that h ∈ L \K, and since K is a real closed field, h is transcendental

over K; similarly, xδ ∈ l((∆)) is transcendental over K ′ := εK(K) ⊆ k((Γ)), and

thus there exists a unique field isomorphism ε̃K : K(h) −→ K ′(xδ) extending εK and

mapping h to xδ. Note that K ′(xδ) ⊆ k((Γ))(xδ) ⊆ k((Γ ⊕ Zδ)), therefore ε̃K is the

unique field embedding K(h) ↪−→ k((Γ⊕ Zδ)) extending εK with ε̃K(h) = xδ.

Since Γ is divisible and ∆ is torsion-free, nδ /∈ Γ for all 0 ̸= n ∈ Z, and thus given

a :=
∑n

i=0 aih
i ∈ K[h] with ai ̸= 0 for all i ∈ [n], it follows that v(aih

i) ̸= v(ajh
j) for

all i, j ∈ [n] with i ̸= j, therefore

v(a) = v

(
n∑
i=0

aih
i

)
= min

0≤i≤n
{v(aihi)} = min

0≤i≤n
{ν(ε(ai)) + iδ}

= ν

(
n∑
i=0

ε(ai)(x
δ)i

)
= ν(ε̃K(a)),

and thus ε̃K : K(h) ↪−→ k((Γ ⊕ Zδ)) is an embedding of valued fields; moreover, the
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value group of K(h) is Γ ⊕ Zδ and its residue field is k ([EP05, Corollary 2.2.3]),

therefore G · hZ ⊆ K(h)>0 is a monomial group of K(h) such that ε̃K(h
′) = xv(h

′) for

all h′ ∈ G ·hZ. By Lemma A.3, ε̃K is an embedding of ordered valued fields, and since

h ∈ L = K⟨r⟩ \ K, K⟨h⟩ = K⟨r⟩ = L by the exchange property ([PS86, Theorem

4.1]), and thus it follows that ε̃K can be extended to an embedding of valued fields

εL : L ↪−→ l((∆)).

Case 2. Γ = ∆ (hence G = H) and there exists t ∈ l \ k such that l = k⟨t⟩. Let

b ∈ l0 be such that λ(b) = t, so that b ∈ l0 \ k0 and l0 = k0⟨b⟩. Since K ∩ l0 = k0 and

b /∈ k 0, it follows that b ∈ L \K, and since both K and k0 are real closed fields, b is

transcendental over both K and k0; similarly, t ∈ l ⊆ l((∆)) is transcendental over

both K ′ := εK(K) ⊆ k((Γ)) and k, and thus there exists a unique field isomorphism

εK : K(b) −→ K ′(t) extending εK and mapping b to t. Note that K ′(t) ⊆ k((Γ))(t) ⊆

k(t)((Γ)), therefore εK is the unique field embedding K(b) ↪−→ k(t)((Γ)) extending εK

with εK(b) = t.

Since v(b) = ν(λ(b)) = ν(t) = 0, it follows that both K ⊆ K(b) and K ′ ⊆ K ′(t) are

Gauss extensions ([EP05, Corollary 2.2.2]). In particular, given a :=
∑n

i=0 aib
i ∈ K[b]

with ai ̸= 0 for all i ∈ [n],

v(a) = v

(
n∑
i=0

aib
i

)
= min

0≤i≤n
{v(ai)} = min

0≤i≤n
{ν(ε(ai))} = ν

(
n∑
i=0

ε(ai)t
i

)
= ν(εK(a)),

and thus εK : K(b) ↪−→ k(t)((Γ)) is an embedding of valued fields; moreover, since

K ⊆ K(b) is a Gauss extension, K(b) has value group Γ and residue field k(t), therefore

G ⊆ K>0 ⊆ K(b)>0 is a monomial group of K(b) such that εK(g) = xv(g) for all g ∈ G.

By Lemma A.3, εK is an embedding of ordered valued fields, and arguing as in Case 1 it

follows that εK can be extended to an embedding of valued fields εL : L ↪−→ l((∆)).

Remark A.6. Let K be a real closed valued field with value group Γ and residue field k.

Call a triple (G, k0, εK) is admissible if G is a monomial group of K, k0 is a coefficient

field of K, and εK : K ↪−→ k((Γ)) is a valued field embedding such that εK(a) = λK(a)

for all a ∈ k0 and εK(g) = xv(g) for all g ∈ G. Then the proof of Theorem A.5 shows

that if K ⊆ L is an extension of real closed valued fields, then every admissible triple

(G, k0, εK) of K extends (in the obvious sense) to an admissible triple (H, l0, εL) of L.
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