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Ricardo Jesús Palomino Piepenborn Local real closed SV-rings of finite rank OAL 2025 Conference 10th of May 2025 2 / 19



Preliminaries Representation theorem Branching ideals Rings of type (n, 1) and of type (n, 2) Model theory References

SV-rings

Throughout this talk all rings are commutative and unital.

Definition 1

A ring A is an SV-ring if A/p is a valuation ring for all p ∈ Spec(A).

Theorem 2

A ring A is an SV-ring if any of the following equivalent conditions hold:

1 A/p is a valuation ring for all p ∈ Specmin(A).

2 Ared := A/Nil(A) is an SV-ring.

3 Spec(A) is normal and Am is an SV-ring for all m ∈ Specmax(A).

Lemma 3

If f : A −↠ C and g : B −↠ C are surjective ring homomorphisms of SV-rings, then
A×C B := {(a, b) ∈ A× B | f (a) = g(b)} is an SV-ring.
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Real closed rings: definition and facts

Definition 4

A ring A is a real closed ring if it satisfies the following conditions:

1 A is reduced;

2 the set of squares of A is the set of non-negative elements of a partial order ≤ on A
and (A,≤) is an f -ring.

3 for all a, b ∈ A, if 0 ≤ a ≤ b, then there exists c ∈ A such that bc = a2; and

4 qf(A/p) is a real closed field and A/p is integrally closed for all p ∈ Spec(A).

1 The category of real closed rings together with ring homomorphisms is complete and
cocomplete.

2 Suppose that A is a real closed ring.
1 If I ⊆ A is an ideal, then A/I is real closed if and only if I is radical.
2 If S ⊆ A is a multiplicative subset, then the localization S−1A is real closed.
3 suppA : Sper(A) −→ Spec(A) is a homeomorphism ( ⇒ (Spec(A),⊆) is a root system).
4 If I , J ⊆ A are radical ideals, then I + J is a radical ideal. In particular, if

p, q ∈ Spec(A) and 1 /∈ p+ q, then p+ q ∈ Spec(A).
5 The poset of radical ideals of A is a distributive lattice with join and meet operations

given by sum and intersection of ideals, respectively.
6 If B is real closed and f : A −→ B is a ring homomorphism, then f is an f -ring

morphism.
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Real closed rings: a key geometric example

Let a ∈ R. The ring of germs of Cs.a(R) at a
+ is Cs.a.(R)/pa+ , where

pa+ := {f ∈ Cs.a.(R) | ∃ε > 0 such that f↾[a,a+ε] = 0}.

The ring Cs.a.(R)/pa− ∼= Cs.a.(R)/pa+ =: V is a real closed valuation ring with residue
field R, and the ring of germs of Cs.a(R) at a is Cs.a.(R)ma

∼= V ×R V . Let X be an
semi-algebraic curve, e.g. the curve in R2 given by y 2 = x3 + x2

Then for all a ∈ X and for all half-branches β of X at a, the ring of germs of Cs.a(X ) at
aβ is Cs.a(X )/paβ ∼= V ; in particular, for each a ∈ X , the ring of germs of Cs.a(X ) at a is

Cs.a(X )ma
∼= V ×R V · · · ×R V︸ ︷︷ ︸

na

,

where na is the number of half-branches of X at a.
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The rank of a ring: part 1

Definition 5

Let A be a ring and ∞ be a symbol such that n < ∞ for all n ∈ N.

1 For p ∈ Spec(A), define rk(A, p) ∈ N to be the number of minimal prime ideals q of
A such that q ⊆ p if this number is finite, and rk(A, p) = ∞ otherwise.

2 The rank of A is rk(A) := sup{rk(A, p) | p ∈ Spec(A)} ∈ N ∪ {∞}.
The ring A is of finite rank if rk(A) ̸= ∞.

Lemma 6

Let A be a ring. The following are equivalent:

1 A is a reduced local SV-ring of rank 1.

2 A is a valuation ring.

Proof.

If item (i) holds, then A being local of rank 1 implies that A has exactly one minimal
prime ideal q, therefore Nil(A) =

⋂
p∈Spec(A) p = q is a prime ideal of A; since A is

reduced, q = (0), and since A is an SV-ring, A/q = A is a valuation ring, as required.
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The rank of a ring: part 2

Local domains are exactly reduced local rings of rank 1, therefore a reduced local ring of
rank 2 has zero divisors. The next lemma clarifies the relationship between the rank of a
reduced local ring and its zero divisors.

Definition 7

Let A be a ring. Two elements a, b ∈ A are orthogonal if ab = 0.

Lemma 8

Let A be a reduced local ring and set Specmin(A) = {pi | i ∈ I}.
1 rk(A) = sup{m ∈ N | ∃a1, . . . , am ∈ A non-zero and pairwise orthogonal}.
2 If rk(A) = |I | = n ∈ N≥2, then for all a1, . . . , an ∈ A non-zero and pairwise

orthogonal there exists a bijection σ : [n] −→ [n] such that pi = Ann(aσ(i)) for all
i ∈ [n], where Ann(a) := {b ∈ A | ab = 0} for a ∈ A.
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Local real closed (SV-)rings of finite rank

Thought the rest of the talk fix n ∈ N with n ≥ 2.

Theorem 9

Let A be a local real closed (SV-)ring of rank n with Specmin(A) = {p1, . . . , pn}. The
canonical embedding A ↪−→

∏n
i=1 A/pi given by a 7→ (a/p1, . . . , a/pn) corestricts to an

isomorphism

A ∼=
(((

A

p1
× A

q2

A

p2

)
× A

q3

A

p3

)
· · · × A

qn−1

A

pn−1

)
× A

qn

A

pn
,

where qj := (
⋂j−1

i=1 pi ) + pj for all j ∈ {2, . . . , n}.

Let A be as in Theorem 9 and j ∈ {2, . . . , n}. Since A is a local real closed ring:

qj =

(
j−1⋂
i=1

pi

)
+ pj =

j−1⋂
i=1

(pi + pj) = pi0 + pj ∈ Spec(A),

where i0 ∈ {1, . . . , n − 1} is such that pi0 + pj ⊆ pi + pj for all i ∈ {1, . . . , n − 1}.
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Branching ideals

Definition 10

Let A be a ring. A prime ideal q ⊆ A is a branching ideal if there exist distinct
p1, p2 ∈ Spec(A) such that p1, p2 ⊊ q and q = p1 + p2.

Lemma 11

Let A be a real closed ring. A prime ideal q ⊆ A is a branching ideal if there exist distinct
q1, q2 ∈ Specmin(A) such that p1, p2 ⊊ q and p = p1 + p2.

Proposition 12

Let A be a local real closed ring of rank n. The following are equivalent:

1 mA is a branching ideal.

2 Every non-unit of A is a sum of two zero divisors.

3 There exist r , s ∈ [n] and local real closed rings A1 and A2 with isomorphic residue
field K such that r + s = n, rk(A1) = r , rk(A2) = s, and A ∼= A1 ×K A2.
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Rings of type (n, 1) and of type (n, 2)

The next diagram summarizes all possible configurations of minimal prime ideals and
branching ideals in a local real closed ring of rank 3:

mA

p1 p2 p3

mA

q

p1 p2 p3

mA

q

p1 p2 p3

mA

q2

q1

p1 p2 p3

Definition 13

Let A be a ring.

1 A is of type (n, 1) if A is a local real closed SV-ring of rank n with exactly one
branching ideal bA, which moreover is maximal.

2 A is of type (n, 2) if A is a local real closed SV-ring of rank n with exactly one
branching ideal bA, which moreover is not maximal.

Rings of type (n, 1) (of type (n, 2)) are n-fold fibre products V1 ×D V2 × · · · ×D Vn of
non-trivial real closed valuation rings Vi along surjective maps Vi −↠ D onto a field
(domain) by Theorem 9.
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The theories Tn, Tn,1, and Tn,2: part 1

Throughout the rest of the talk let L := {+,−, ·, 0, 1} be the language of rings.

Let φrk=n be the L -sentence expressing:

“there exists n non-zero pairwise orthogonal elements a1, . . . , an ∈ A such that if b ∈ A is
a non-zero element distinct from all the ai , then b is not orthogonal to any ai”.

Let A be a reduced local ring. Then A |= φrk=n if and only if A has rank n by Lemma 8.
Suppose now that A |= φrk=n. Then Specmin(A) = {Ann(ai ) | i ∈ [n]} for any non-zero
pairwise orthogonal elements a1, . . . , an ∈ A, therefore A is an SV-ring if for all b, c ∈ A
and all i ∈ [n], b/Ann(ai ) divides c/Ann(ai ) or c/Ann(ai ) divides b/Ann(ai ) by Theorem
2. That is,

A |= ∃x((bx − c)ai = 0) or A |= ∃x((cx − b)ai = 0).

Let φSV,n be the L -sentence expressing:

“for all non-zero pairwise orthogonal elements a1, . . . , an ∈ A, for all b, c ∈ A, and for all
i ∈ [n], either bai divides cai or cai divides bai”.

Definition 14

Let Tn be the theory of local real closed rings together with φrk=n and φSV,n.
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The theories Tn, Tn,1, and Tn,2: part 2

Let A |= Tn. Then Specmin(A) = {Ann(ai ) | i ∈ [n]} by Lemma 8, and thus every
branching ideal of A is of the form Ann(ai ) + Ann(aj) for some i , j ∈ [n] with i ̸= j by
Lemma 11. Let φbr,n to be the L -sentence expressing:

“Ann(ai ) + Ann(aj) = Ann(ak) + Ann(aℓ) for all pairwise orthogonal non-zero elements
a1, . . . , an ∈ A and for all i , j , k, ℓ ∈ [n] such that i ̸= j and k ̸= ℓ.”

Therefore A |= φbr,n if and only if A has exactly one branching ideal.

Definition 15

Let Tn,1 be the theory Tn ∪ {φbr,n} together with the L -sentence expressing: “every unit
is a sum of two zero divisors”. Let Tn,2 be the theory Tn ∪ {φbr,n} together with the
L -sentence expressing: “there exists a unit which is not a sum of two zero divisors”.

Models of Tn,j are exactly rings of type (n, j) for j ∈ {1, 2} by Proposition 12. Note that
if A |= Tn,2, then the branching ideal bA is definable (without parameters) by the formula
b(x) expressing

“there exist pairwise orthogonal non-zero elements a1, . . . , an ∈ A such that
x ∈ Ann(a1) + Ann(a2)”.
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Model completeness for Tn,1

Theorem 16

Tn,1 is model complete, that is, if A,B |= Tn,1 and A ⊆ B as L -structures, then A is
existentially closed in B (if φ(x) is a finite Boolean combination of formulas of the form
f (x) = 0 with f ∈ A[x ], then B |= ∃xφ(x) implies A |= ∃xφ(x)).

Sketch of proof.

Let A,B |= Tn,1 such that A ⊆ B as L -structures. Set k := A/mA and l := B/mB .
There exists a commutative diagram of local embeddings

A

A′

B

B ′

εA

⊆

εB

η

where A′ := k[[Γ]]×k k[[Γ]] . . .×k k[[Γ]] and B ′ := l[[∆]]×l l[[∆]] . . .×l l[[∆]] for some
divisible o-groups Γ and ∆, and k[[Γ]] is the valuation ring of the real closed Hahn series
field k((Γ)). Then A′ is existentially closed in B ′ and A is existentially closed in A′.
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Model completeness for Tn,2 and consequences of model completeness

Theorem 17

Let T ∗
n,2 be the (L ∪ {m, b})-theory extending Tn,2 and stating that m is the maximal

ideal and b is the branching ideal. Then T ∗
n,2 is model complete.

Theorem 18

Tn,1 is the model companion of the theory of local real closed (SV-) rings of rank n.

Sketch of proof.

Let A |= Tn and Specmin(A) = {p1, . . . , pn}. Then there exists a canonical L -embedding

A ↪−→
((

A

p1
× A

mA

A

p2

)
· · · × A

mA

A

pn−1

)
× A

mA

A

pn
|= Tn,1.

Theorem 19

Tn,1 and Tn,2 are complete, hence decidable.
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