Relative Quantifier Elimination for Lattice-Ordered Modules of Continuous Semi-Algebraic Functions on a Curve

Ricardo Palomino Piepenborn

The University of Manchester

OAL-RAG 2024, 10th of May 2024

Contents

① Some Model Theory of Abelian ℓ-Groups

2 Lattice-Ordered Modules of Continuous Semi-Algebraic Functions on a Curve

Some Model Theory of ℓ -Groups: standard structures

Convention. In this talk, all groups are abelian.

Let G be an ℓ -group of functions $X \longrightarrow N$ ($X \neq \emptyset$ a set, N an o-group) and $f \in G$.

•
$$\{f = 0\} := \{x \in X \mid f(x) = 0\}$$
 and $\{f \ge 0\} := \{x \in X \mid f(x) \ge 0\}$; note that

$$\{f=0\} = \{f \ge 0\} \cap \{-f \ge 0\} \text{ and } \{f \ge 0\} = \{f \land 0 = 0\}.$$

•
$$L_{G,X,N} := \{ \{ f = 0 \} \mid f \in G \} = \{ \{ f \ge 0 \} \mid f \in G \}; \text{ note that }$$

$$\{f \ge 0\} \cup \{g \ge 0\} = \{f \lor g \ge 0\} \text{ and } \{f \ge 0\} \cap \{g \ge 0\} = \{f \land g \ge 0\}.$$

•
$$\mathscr{L}^{\mathsf{gr}} := \{+, -, 0\}, \ \mathscr{L}^{\ell - \mathsf{gr}} := \mathscr{L}^{\mathsf{gr}} \cup \{\leq, \wedge, \vee\}, \ \mathsf{and} \ \mathscr{L}^{\mathsf{lat}} := \{\sqsubseteq, \sqcap, \sqcup, \top\}.$$

Definition

The standard structure for $G \subseteq N^X$ is the 2-sorted structure $(G, P, L_{G,X,N})$, where:

- G is regarded as an $\mathcal{L}^{\ell\text{-gr}}$ -structure,
- $L_{G,X,N}$ is regarded as an \mathcal{L}^{lat} -structure, and
- $P: G \longrightarrow L_{G,X,N}$ is the map $f \mapsto \{f \ge 0\}$.

Some Model Theory of ℓ-Groups: the patching condition

Definition

 $G \subseteq N^X$ is closed under patching in N^X if for all $f,g \in G$ and for all $A,B \in L_{G,X,N}$,

$$f_{\upharpoonright A \cap B} = g_{\upharpoonright A \cap B} \implies \exists h \in G \text{ such that } h_{\upharpoonright A} = f_{\upharpoonright A} \& h_{\upharpoonright B} = g_{\upharpoonright B};$$

equivalently,

$$(G, P, L_{G,X,N}) \models \forall xy \forall \zeta_1 \zeta_2 [\zeta_1 \sqcap \zeta_2 \sqsubseteq \{x = y\} \rightarrow \exists z (\zeta_1 \sqsubseteq \{z = x\} \& \zeta_2 \sqsubseteq \{z = y\})].$$

Example. Let N be a real closed field, $X \subseteq N^n$ be closed and semi-algebraic, and G be the ℓ -group of all continuous semi-algebraic functions $X \longrightarrow N$. Let $f, g \in G$ and $A, B \in L_{G,X,N}$ be such that $f_{\upharpoonright A \cap B} = g_{\upharpoonright A \cap B}$. The map $h_0 : A \cup B \longrightarrow N$ given by

$$h_0(x) := \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

is continuous and semi-algebraic. By the semi-algebraic Tietze extension theorem there exists $h \in G$ such that $h_{\uparrow A \cup B} = h_0$; such h verifies the patching condition for G.

Some Model Theory of ℓ-Groups: the Shen-Weispfenning theorem

Theorem (Shen, Weispfenning)

Let $\varphi(\overline{x}, \overline{\xi})$ be an $(\mathscr{L}^{\ell\text{-gr}} \cup \mathscr{L}^{\text{lat}} \cup \{P\})$ -formula. Then $\varphi(\overline{x}, \overline{\xi})$ is effectively equivalent in every divisible standard structure closed under patching to a formula of the form

$$\exists \zeta_1 \ldots \zeta_m \left[\gamma(\overline{\xi}, \overline{\zeta}) \& \bigwedge_{i=1}^m \zeta_i = P(t_i(\overline{x})) \right],$$

where ζ_i are lattice variables, γ is an $\mathscr{L}^{\mathsf{lat}}$ -formula, and t_i are $\mathscr{L}^{\mathsf{gr}}$ -terms.

Let $(G, P, L_{G,X,N})$ be a standard structure and $f, g \in G$. Then

$$(G, P, L_{G,X,N}) \models f \leq g \leftrightarrow P(g-f) = \top \leftrightarrow \exists \zeta [\zeta = \top \& \zeta = P(g-f)].$$

General proof idea: reduce the problem to eliminating $\mathscr{L}^{\ell\text{-gr}}$ -quantifiers in formulas of simple form (e.g. $\exists z [\xi_1 \sqsubseteq \{z \ge x\} \& \xi_2 \sqsubseteq \{z \le y\}]$); then use the patching condition to eliminate such quantifiers (e.g. $\xi_1 \sqcap \xi_2 \sqsubseteq \{x \le y\}$).

Corollary

Let $G \subseteq N^X$ be divisible and closed under patching. If the lattice $L_{G,X,N}$ is decidable, then so is the standard structure $(G, P, L_{G,X,N})$, as well as the ℓ -group G.

The Set-Up

Fix the following notation:

- R is a real closed field.
- $X \subseteq R^n$ is a semi-algebraic curve.
- $C_{s.a.}(X)$ is the set of continuous semi-algebraic functions $X \longrightarrow R$.
- $L := L_{C_{s.a.}(X),X,R}$; i.e., L is the lattice of closed and semi-algebraic subsets of X.

Note that

$$(\textit{C}_{s.a.}(\textit{X});+,-,0,\leq,\wedge,\vee) \stackrel{\textit{P}}{\longrightarrow} (\textit{L};\subseteq,\cap,\cup,\top)$$

is a divisible standard structure closed under patching.

Consider the structure

$$\mathscr{M}_0 := (C_{\mathsf{s.a.}}(X); +, -, 0, \leq, \wedge, \vee, (\alpha)_{\alpha \in C_{\mathsf{s.a.}}(X)}) \xrightarrow{P} (L; \subseteq, \cap, \cup, \top);$$

following the Shen-Weispfenning proof, one can show that eliminating module quantifiers in formulas modulo \mathcal{M}_0 reduces to eliminating module quantifiers in formulas of simple form, e.g.

$$\exists z [\xi_1 \sqsubseteq \{\alpha z \ge x\} \& \xi_2 \sqsubseteq \{\beta z \le y\}],$$

where $\alpha, \beta > 0$

Eliminating Module Quantifiers: local solutions to systems of inequalities

Lemma

Let $A, B \in L$, $f, g \in C_{s.a.}(X)$ and $\alpha, \beta \ge 0$. Let $\{a_1, \ldots, a_n\}$ be the union of the boundary points of $\{\alpha = 0\}$ and of $\{\beta = 0\}$. The following are equivalent:

(i) There exists $h \in C_{s.a.}(X)$ such that

$$A \subseteq \{\alpha h \ge f\} \text{ and } B \subseteq \{\beta h \le g\}.$$
 (†)

- (ii) (a) $A \cap B \subseteq \{\beta f \le \alpha g\}, A \cap \{\alpha = 0\} \subseteq \{0 \ge f\}, B \cap \{\beta = 0\} \subseteq \{0 \le g\}, and$
- **(b)** there exists $\epsilon > 0$ such that (\dagger) is solvable in $Z_0 := \bigcup_{i=1}^n \overline{B}_{\epsilon}(a_i)$; i.e. there exists $h_0 \in C_{s.a.}(X)$ such that $Z_0 \cap A \subseteq \{\alpha h_0 \ge f\}$ and $Z_0 \cap B \subseteq \{\beta h_0 \le g\}$.

That is, there exists $h \in C_{s.a.}(X)$ solving $A \subseteq \{\alpha x \ge f\}$ and $B \subseteq \{\beta x \le g\}$ if and only if:

- (a) some inclusions of zero sets hold (expressible in \mathcal{M}_0 with parameters), and
- (b) there exists $h \in C_{s.a.}(X)$ solving $A \subseteq \{\alpha x \ge f\}$ and $B \subseteq \{\beta x \le g\}$ locally around certain finitely many points of X.

Main idea to eliminate module quantifiers: enrich \mathcal{M}_0 with its germwise structure to express item (b) in a first-order way.

Rings of Germs of Continuous Semi-Algebraic Functions on a Curve

Let $a \in R$. The ring of germs of $C_{s.a}(R)$ at a^+ is $C_{s.a.}(R)/\mathfrak{p}_{a^+}$, where

$$\mathfrak{p}_{\mathsf{a}^+} := \{ f \in \mathcal{C}_{\mathsf{s.a.}}(R) \mid \exists \epsilon > 0 \text{ such that } f_{\upharpoonright [\mathsf{a}, \mathsf{a} + \epsilon]} = 0 \};$$

note that $C_{\text{s.a.}}(R)/\mathfrak{p}_{a^-}\cong C_{\text{s.a.}}(R)/\mathfrak{p}_{a^+}=:V$ is a real closed valuation ring with residue field R, and the ring of germs of $C_{\text{s.a.}}(R)$ at a is $C_{\text{s.a.}}(R)_{\mathfrak{m}_a}\cong V\times_R V$. If X is an arbitrary curve, e.g. the curve in R^2 given by $Y^2=x^3+x^2$

then for all $a \in X$ and for all half-branches a^{κ} of X at a, the ring of germs of $C_{s.a}(X)$ at a^{κ} is $C_{s.a}(X)/\mathfrak{p}_{a^{\kappa}} \cong V$; in particular, for each $a \in X$, the ring of germs of $C_{s.a}(X)$ at a is

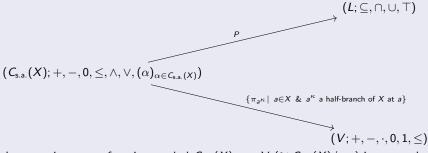
$$C_{s.a}(X)_{\mathfrak{m}_a}\cong \underbrace{V\times_R V\cdots\times_R V}_{n_a},$$

where n_a is the number of half-branches of X at a.

The 3-Sorted Structure M

Definition

Let *M* be the following 3-sorted structure:



where $\pi_{a^{\kappa}}$ is a unary function symbol $C_{\text{s.a.}}(X) \longrightarrow V \ (\cong C_{\text{s.a.}}(X)/\mathfrak{p}_{a^{\kappa}})$ interpreted as the map $f \mapsto f/\mathfrak{p}_{a^{\kappa}}$ for each $a \in X$ and each half-branch a^{κ} of X at a.

Eliminating Module Quantifiers in \mathcal{M} : an example via local divisibility

Example. Suppose that X = R, A = [-1, 1], and $\partial(\{\alpha = 0\}) = \{0\}$. The following are equivalent:

- (i) $\mathcal{M} \models \exists x [A \sqsubseteq \{\alpha x = f\}].$
- (ii) (a) $\mathcal{M} \models A \cap \{\alpha = 0\} \subseteq \{f = 0\}$, and
- **(b)** $\mathcal{M} \models \exists X_1, X_2[\pi_{0^-}(\alpha)X_1 = \pi_{0^-}(f) \& \pi_{0^+}(\alpha)X_2 = \pi_{0^+}(f) \& X_1 X_2 \in \mathfrak{m}],$ where $X_1 X_2 \in \mathfrak{m}$ is the formula in V stating that $X_1 X_2$ is not a unit.

Proof. By the Lemma in slide 7, (i) is equivalent to (a) together with the statement $\exists \epsilon > 0 \exists h_0 \in C_{\text{s.a.}}(X)[\overline{B}_{\epsilon}(0) \subseteq \{\alpha h_0 = f\}]$; this latter statement says exactly that α divides f locally around 0, i.e. $C_{\text{s.a.}}(X)_{\mathfrak{m}_0} \cong V \times_R V \models \exists X[\alpha_{\mathfrak{m}_0}X = f_{\mathfrak{m}_0}]$, and this is equivalent to (b).

Statement of the Main Theorem

Theorem (P.P.)

Let $\varphi(\overline{x}, \overline{\xi}, \overline{X})$ be a formula in the language of \mathscr{M} . Then $\varphi(\overline{x}, \overline{\xi}, \overline{X})$ is equivalent in \mathscr{M} formula of the form

$$\exists \zeta_1 \dots \zeta_m \exists Z_1 \dots Z_n \left[\gamma(\overline{\xi}, \overline{X}, \overline{\zeta}, \overline{Z}) \& \bigwedge_{i=1}^m \zeta_i = P(s_i(\overline{x})) \& \bigwedge_{j=1}^n Z_j = \pi_j(t_j(\overline{x})) \right], \quad (\dagger$$

where:

- ζ_i are variables from L,
- Z_j are variables from V,
- \bullet γ is a Boolean combination of formulas (with parameters) in L and of formulas (with parameters) in V,
 - s_i and t_i are module terms, and
 - each π_j is $\pi_{a^{\kappa}}$ for some $a \in X$ and some half-branch a^{κ} of X at a.

Moreover, if R is a recursive real closed field, then $\varphi(\overline{x}, \overline{\xi}, \overline{X})$ is effectively equivalent to a formula of the form (†).

A Corollary of the Main Theorem

Corollary

Suppose that R is a recursive real closed field. Then the 3-sorted structure \mathcal{M} is decidable, and thus so is the ℓ -module $C_{s.a.}(X)$.

Sketch of proof.

By the Main Theorem, it suffices to check that both L and V are decidable. L is decidable because it is a "1-dimensional topological lattice" (Tressl); V is decidable because its theory has a recursive axiomatization (Cherlin-Dickmann).

References I

L. Phillips

Some structures interpretable in the ring of continuous semi-algebraic functions on a curve

PhD Thesis, University of Manchester, 2015.

M. Darnel

The theory of lattice ordered-groups

Monographs and Textbooks in Pure and Applied Mathematics, 187, viii + 539 pp, 1995.

S. Steinberg

Lattice-ordered rings and modules

Springer Science & Business Media, 630 pp, 2009.

F. Shen & V. Weispfenning

Continuous functions: I-groups and decision problems Unpublished note.

References II

J. Bochnak, M. Coste, M.-F. Roy

Real Algebraic Geometry

Springer-Verlag Berlin Heidelberg, 430 pp, 1998.

A. Grzegorzcyk

On the undecidability of some topological theories Fundamenta Mathematicae, 38, 137-152, 1951.

M. Tressl

On the strength of some topological lattices

Ordered Algebraic Structures and Related Topics, 697, 325-347, 2017.

G. Cherlin & M. Dickmann

Real closed rings II: model theory

Annals of Pure and Applied Logic, 25 (3), 213-231, 1983.