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Abstract. In this paper we establish a way of checking if two d-tuples of n× n matrices over C are conjugate

using a function Fd : Cdn2 → Ck that outputs the coefficients in the polynomials of the reduced Gröbner basis of
certain ideal. We give bounds for the k ∈ N in the codomain of Fd and we illustrate the solution of the problem

by means of small examples implemented in Singular.
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1. Introduction

It is a well-known result in Linear Algebra that two n × n matrices A and B over C are conjugate (i.e.
∃Z ∈ GLn(C) such that Z−1AZ = B) if and only if A and B have the same Jordan Normal Form, up to
re-ordering of Jordan blocks. Our aim with this paper is to obtain a necessary and sufficient condition that
characterizes the property of two d-tuples of n× n matrices over C being conjugate. In other words, we want to
obtain an invariant that uniquely determines simultaneous conjugation of matrices over C. This problem has
been well known for decades, and there have been various studies establishing some results; for these we refer to
[Pro76] and in particular to [Fri83], where an explicit solution is constructed up to a finite number of exceptions.

This paper takes on what is discussed in [KT18, p. 13, Section 2.4] and develops it giving an explicit illustration
of the ’wildness’ of the classification of d-tuples of n × n matrices over C under simultaneous conjugation; we
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denote this equivalence relation on Md
n(C) by ∼d. The paper is divided in three themes, the first one being

where the full explanation of the existence and the explicit description of the invariant are given; this can be
found in Section 3. In the first part of this section we exhibit how after fixing d ∈ N and expressing ∼d as a
(0-definable) formula E(x, y) in the language of rings, a model theoretic result (Proposition 3.0.1) ensures the

existence of a (0-definable) function Fd : Cdn2 −→ Ck for some k ∈ N such that for A and B in Md
n(C), A and B

are simultaneous conjugate if and only if Fd(α) = Fd(β), where α (respectively β) is a vector in Cdn2

representing
the entries of all matrices of A (respectively B). We show that E(x, y) is a finite conjunction of polynomials equal
to 0 in the variables x and y (which correspond to two arbitrary d-tuples of n×n matrices X and Y , respectively);
by specializing y to α in these polynomials, where α represents the entries of the matrices of a concrete tuple
A ∈ Md

n(C), the specialized polynomials give rise to an ideal Jα. From this we explain how to obtain Iα, the
vanishing ideal of the Zariski closure of the equivalence class of α; after a topological remark (Remark 3.0.2) it
follows that Fd(α) is a vector consisting of the coefficients of the polynomials of the reduced Gröbner basis of Iα.

In the second half of Section 3 we follow the idea of the Gröbner Cover developed by Montes in [Mon18] and
we modify and apply it to our problem in order to give in subsection 3.2.5 a description of the invariant via a

partition of Cdn2

.

Section 4 is concerned with obtaining bound for the k ∈ N in the codomain of the function Fd given in terms of
the length d of the tuple of matrices, the size of the matrices n and the dimension of the ideal Jα emerging from
the solution of the problem. This is achieved by applying known bounds for the cardinality and maximal degree
of generators of the reduced Gröbner basis of an ideal (Theorem 4.1.1) and it’s radical ([Lap06, p. 193, Algorithm
8]) after fixing a monomial ordering on the variables; having obtained these bounds applied to our context we get

an upper bound on the number of entries of Fd(α) for α ∈ Cdn2

, and since all the bounds are independent of the
choice of α we obtain a bound for k at the end of subsection 4.2.

The last topic of this paper is encapsulated in the three Sections 5, 6 and A; it deals with the implementation
of some of the results using the Computer Algebra System (CAS for short) Singular. We start delivering the
layout of our problem using Singular by giving and explaining some procedures that set-up this CAS for our
purposes and then we use these to present worked examples that illustrate the solution to the problem in small
cases when d = 1, 2 and n = 2, 3.

Finally, we also made Section 7 to list a set of open questions that have arisen from this paper and improvements
that could be made on the work presented here.

2. Notation and Background Theory

We will start by fixing some notation. Throughout this paper, d will denote the number of matrices in each
of the tuples X and Y , and n will be the size of the square matrices in each of the d-tuples above. Being more
explicit, we will consider the tuples of matrices X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd), where Xi, Yj ∈Mn(C)
for all i, j ∈ {1, . . . , d}. We define the dimensions of the problem to be the pair (d, n) for concrete values of d and
n.

Unless stated otherwise, we will denote the variables by lowercase letters and the different sets of variables by
overlined lowercase letters, so x = (x1, . . . , xt) is a set of t distinct variables. Moreover, if x = (x1, . . . , xt) we
set |x| = t. Having this in mind, for a fixed field K we define K[x] to be the polynomial ring with variables x
over K. As standard, we write deg(f) for the maximum of the degrees of monomials with non-zero coefficients in
the polynomial f ∈ K[x]; we also let totdeg(f) to be maximal of the sum of all the powers of the variables in a
single monomial of f . Throughout the paper, K will be an arbitrary field and K will be an algebraically closed
extension of K. In practice we will be mostly focused on C, Q and some simple algebraic and transcendental
extensions of Q.
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In order to understand the strategy for the solution of the problem, we must first establish some basic notions
and results both from Commutative Algebra and Algebraic Geometry. For a complete introduction to these
subjects we refer to [CLO15].

2.1. Basics on Commutative Algebra. All ideals that we shall consider will be given in the following form:

Definition 2.1.1. A set of polynomials {f1, . . . , fs} in K[x] is said to generate the ideal I if and only if:

∀f ∈ I, f =

s∑
i=1

gifi, for some gi ∈ K[x], (1 ≤ i ≤ s).

If {f1, . . . , fs} generates I, we say that {f1, . . . , fs} is a set of generators of I and we write I = ⟨f1, . . . , fs⟩.

There is a notion of dimension associated to an ideal that we will need for the section on bounds 4. There are
many equivalent formulations for the definition of the dimension of an ideal, but we will present here the one that
will be more accessible to all readers.

Definition 2.1.2. The dimension of an ideal I ◁ K[x] is:

dim(I) = max{|x′| : x′ ⊆ x, I ∩K[x′] = {0}}.

This coincides with the standard definition of Krull dimension of an ideal I (i.e. the maximal length of chains
of prime ideals containing I) if the ground field is algebraically closed. (cf. [CLO15, p. 513, Ex. 4]). The next
most important concept that we will make us of throughout this paper is that of a Gröbner basis. However we
first have to give the following definition:

Definition 2.1.3. A monomial ordering ≻ on the set of variables x = (x1, . . . , xt) is a partial order that satisfies
the following:

(I) ≻ is total, meaning that for any two monomials m1 and m2 in the variables x we have that either m1 ≻ m2

or m2 ≻ m1.
(II) For every monomial m in the variables x, m ≻ 1.
(III) For every three monomials m,m1 and m3 in the variables x, if m1 ≻ m2, then mm1 ≻ mm2.

A monomial ordering on our set of variables allows us to compare any two monomials. In particular, if we
fix a monomial ordering ≻ on x, then we can write any non-zero polynomial f ∈ K[x]\{0} in the so called
standard form (which depends on the choice of ≻), meaning that we can write f = a1m1 + · · ·+ akmk where
ai ∈ K(1 ≤ i ≤ k) and m1 ≻ · · · ≻ mk. In this situation we let:

• lt≻(f) = a1m1 (the leading term of f)
• lc≻(f) = a1 (the leading coefficient of f)
• lm≻(f) = m1 (the leading monomial of f)

As an important example of monomial ordering we give the following definition:

Definition 2.1.4. A monomial ordering ≻ on K[x1, . . . , xm] is called an elimination ordering for x1, ..., xs (for
some 1 ≤ s ≤ m) iff f ∈ K[x1, . . . , xs, xs+1, . . . , xm] and lm≻(f) ∈ K[xs+1, . . . , xm] =⇒ f ∈ K[xs+1, . . . , xm].

2.1.5. As an important example of elimination ordering we point out that for a set of variables {x1, . . . , xn} the
lexicographic ordering is an elimination ordering for {x1, . . . , xj} for j = 1, . . . , n (cf. [GP08, p. 41]). For further
examples of monomial orderings see [CLO15, p. 56-58]].

Having the idea of a monomial ordering we can define:

Definition 2.1.6. The ideal of leading terms of an ideal I ◁ K[x] is:

LT≻(I) = ⟨lm≻(f) : f ∈ I\{0}⟩.
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From this we can finally state what do we mean by:

Definition 2.1.7. A Gröbner basis of an ideal I is a finite set G ⊆ I\{0} such that LT≻(I) = ⟨lm≻(f) : f ∈ G⟩

To understand now what do we mean by a reduced Gröbner basis we have to first introduce the analogue for
long division of polynomials for polynomials in several variables. As a preliminary definition we have:

Definition 2.1.8. Let f, g, h ∈ K[x] and write f = a1m1 + · · ·+ akmk in standard form with respect to some
fixed monomial ordering ≻. We say that f reduces to h modulo g in one step (with respect to ≻) if lm(g) divides

a monomial mi of f and h = f − lt≻(f)
lt≻(g) g.

Equipped with the one step reduction of polynomials we can then define:

Definition 2.1.9. Let f, h ∈ K[x] and F ⊆ K[x]. We say that f reduces to h modulo F (with respect to ≻) if h
can be obtained from f by a sequence of one-step reductions modulo elements of F . If f cannot be reduced to
another polynomial modulo F , we say that f is reduced modulo F (with respect to ≻). If f reduces to r modulo
F and r is reduced modulo F , then r is a remainder of f modulo F (with respect to ≻).

For a detailed example of polynomial reduction see [CLO15, p. 67, Example 4]. From this it is then possible to
define the reduced Gröbner basis of an ideal.

Definition 2.1.10. A Gröbner basis G = {g1, . . . , gk} of I ◁K[x] is reduced (with respect to ≻) if each gi is monic
(i.e. lc≻(gi) = 1 for each 1 ≤ i ≤ k) and reduced modulo every other gj for j ̸= i.

Remark 2.1.11. Throughout the paper and after fixing a monomial ordering ≻ for our set of variables, we will
write G for a Gröbner basis of an ideal and G for the reduced Gröbner basis of an ideal with respect to ≻.

Gröbner bases, both reduced and not reduced, are a very powerful tool in Computational Algebra and
Commutative Geometry in general. Here we will list three of their most important and characteristic properties
(fixing first a monomial ordering ≻ on the variables x), in particular those that are relevant to our problem:

• Every ideal I ◁ K[x] has a Gröbner basis (with respect to ≻).
• If G is a Gröbner basis of I ◁ K[x], then I = ⟨G⟩.
• Every ideal I ◁K[x] has a unique reduced Gröbner basis (with respect to ≻) after ordering the polynomials
in it according to the order of the leading monomials.

For an in-depth study of Gröbner bases and their applications we refer to the excellent book from Cox, Little
and O’Shea [CLO15, p. 49, Chapter 2]. To conclude this subsection, we state the theorem that realises one of the
most important applications of Gröbner basis to our project: the Elimination Theorem.

Theorem 2.1.12. Let I ◁ K[x1, . . . xs, xs+1, . . . , xm] be an ideal and let ≻elim be an elimination ordering for
x1, . . . , xs. If G is a Gröbner basis for I, then G ∩K[xs+1, . . . , xm] is a Gröbner basis for I ∩K[xs+1, . . . , xm].

Remark 2.1.13. It follows from Theorem 2.1.12 that the same holds if we replace reduced Gröbner basis for
Gröbner basis. Let G be the reduced Gröbner basis of I ◁K[x1, . . . xs, xs+1, . . . , xm with respect to the elimination
ordering ≻elim for x1, . . . , xs. In particular, G is a Gröbner basis for I, so by Theorem 2.1.12, G ∩K[xs+1, . . . , xm]
is a Gröbner basis for I ∩K[xs+1, . . . , xm]. But G ∩K[xs+1, . . . , xm] is a subset of G and since G is reduced it
follows (by definition of reduced Gröbner basis) that G ∩K[xs+1, . . . , xm] is also reduced.

Remark 2.1.14. We would like to point out that in a lot of the literature the theorem above is usually stated only
when the monomial ordering is the lexicographic one; the theorem stated in this paper is a generalisation of that.
For example, in [CLO15, p. 122, Theorem 2] the Elimination Theorem is formulated only for the lexicographic
order but the generalised version of the theorem is given as an exercise in this same book in page 128, Exercise 5.
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2.2. Basics on algebraic geometry. As with the previous section, we start by defining the main object of
study in Algebraic Geometry:

Definition 2.2.1. Let S ⊆ K[x1, . . . , xm]. The variety (or zero-set) of S is:

V(S) = {(a1, . . . , am) ∈ Km : f(a1, . . . , am) = 0 , ∀f ∈ S}.

Remark 2.2.2. Note that S is just a subset of K[x1, . . . , xm]; in practice we will only consider varieties of ideals
and not arbitrary subsets of our polynomial rings. On the other hand, notice that V(S) = V(I), where I is the
ideal generated by S.

As a dual notion, we can also associate an ideal to a subset of Kn. Namely:

Definition 2.2.3. Let V ⊆ Km. The vanishing ideal of V is:

I(V ) = {f ∈ K[x1, . . . , xm] : f(a) = 0 , ∀a ∈ V }.

In order to give the main result in this section we also have to introduce the notion of the radical of an ideal.

Definition 2.2.4. Let I be an ideal of a ring R. The radical of I is:

√
I = {a ∈ R : an ∈ I for some n ∈ N}.

An ideal I is called radical if and only if I =
√
I.

Equipped with these definitions we can state the strong Nullstellensatz :

Theorem 2.2.5 (Theorem 2 in page 179 of [CLO15]). Let K be an algebraically closed field. Then I(V(I)) =
√
I

for every ideal I ◁ K[x].

2.3. Basics on model theory. Throughout this paper we mostly adhere to the notation as presented in [Hod93]
and we refer to this book for a concise and comprehensive resource of the subject.

The alphabet of language L is a collection consisting of:

• Logical symbols. These are ¬, →, the quantifier ∀, the equality symbol (
.
=), brackets, comma and symbols

to denote variables.
• Three mutually disjoint sets; the set of relation symbols R, the set of function symbols (F) and the set of
constant symbols (C).

• Two maps: λ : R −→ N called the arity of relation symbols, and µ : F −→ N called thearity of function
symbols. We say that R ∈ R (F ∈ F) is n-ary if λ(R) = n (µ(F ) = n).

From this we can define inductively the L-terms starting from the set of variables and constant symbols (cf.
[Hod93, p.11]); for n > 0, if F is an n-ary function symbol and t1, . . . , tn are L-terms, then F (t1, . . . , tn) is also
an L-term, and nothing else is an L-term.

Define also the atomic L-formulas to be either t1
.
= t2 where t1 and t2 are L-terms, or R(t1, . . . , tn) where R is

an n-ary relation symbol and t1, . . . , tn are L-terms. Similarly as with L-terms, we define now inductively the
L-formulas; starting with atomic L-formulas, L-formulas are of the form ¬φ, φ→ ψ and ∀xφ, where φ and ψ are
previously defined L-formulas and x is a variable.

We thus define the language L as the triple consisting of the alphabet of L, the set of all L-terms and the set
of all L-formulas.
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For us, L always denotes a first-order language, φ, γ and ψ L-formulas and x, y, z variables as before. In
particular, we focus only in the language of rings L = {+,−, ·, 0, 1}, where +,− and · are binary function symbols
and 0 and 1 are constants. Moreover we assume all our formulas are in prenex form, i.e. they consist of a string
of quantifiers followed by a quantifier-free formula. In our case, quantifier-free formulas in the language of rings
are simply polynomials.

Having defined the language we can employ the idea of an L-structure (cf. [Hod93, p.2, Section 1.1]) to give
the definition of:

Definition 2.3.1. Let M be an L-structure with domain M and let A ⊆ M . A subset S ⊆ Mn is called
A-definable if there is some L-formula φ(x1, . . . , xn, y1, . . . , yl) and some l-tuple a ∈ Al such that:

S = {(m1, . . . ,mn) ∈Mn : φ(m1, . . . ,mn, a1, . . . , al) is true inM}.

If a subset is definable with parameters from ∅ we say it is 0-definable.

We can talk also about definable functions:

Definition 2.3.2. LetM be an L-structure with domain M . Let A ⊆M and S ⊆Mn. A function f : S −→M l

is called A-definable in M if its graph is a definable subset of Mn ×M l.

3. Theoretical Solution of the Problem

In order to proceed we first have to formalize the situation. Fix d ∈ N and let X,Y be two d-tuples of n× n
matrices over C as defined in 2. We write:

X ∼d Y ⇐⇒ ∃Z ∈ GLn(C) : Z
−1XZ = Y (1)

It is a routine exercise to check that ∼d is an equivalence relation on the set of d-tuples of n × n matrices
over C (i.e. on Md

n(C)). In model theoretic terms, we work with the L-structure (C,+,−·, 0, 1), where L is the
language of rings (cf. 2.3); ∼d is a 0-definable equivalence relation that can be defined by a formula without
parameters E(x, y) expressing ∃Z ∈ GLn(C) : Z

−1XZ = Y . Here, x and y are dn2-tuples of variables, where x
and y represent all the entries in all the matrices of X and Y respectively. Using this language, talking about the
equivalence class of a concrete tuple of matrices Y = A is equivalent to talking about the equivalence class of a
concrete tuple y = α, where α represents the entries in all the matrices of A.

The first result that we need to establish is the existence of the invariant that we are looking for. As we will

see, the invariant will take form of a function Fd : Cdn2 −→ Ck for some k ∈ N. The existence of such Fd is
ensured by the property of the field C having elimination of imaginaries (cf. [Hod93, Theorem 4.4.6]). We include
here the particular result that makes explicit the existence of such function:

Proposition 3.0.1. Let L be a language and suppose that T is an L-theory with 2 definable constants. Then T
has elimination of imaginaries if and only if for all formulas without parameters E(x, y) of L where x and y are
of the same length, we have the following: if E(x, y) defines an equivalence relation, then there is a 0-definable
function F : M |x| −→ M |z| (M |= T ) for some z such that the equivalence classes of E(M) ⊆ M |x| ×M |y| are
exactly the non-empty fibers of F .

Hence, by 3.0.1, C having elimination of imaginaries [Hod93, p. 157, Section 4.4] is equivalent to the existence

of a 0-definable function Fd : Cdn2 −→ Ck for some k such that X ∼d Y ⇐⇒ Fd(X) = Fd(Y ), where ∼d is the
0-definable equivalence relation defined in 1. Our strategy to solve the problem is therefore to find a concrete
function Fd whose fibers correspond bijectively to the equivalence classes of ∼d. The non-explicit but formal
construction of these functions Fd for d ∈ N is given in 3.2.5; quantifier elimination for algebraically closed fields
ensures that the 0-definable function Fd will be piecewise rational.
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We start by breaking down the expression of E(x, y) by noting that it is of the form ∃z∃w V (x, y, z, w), where
z is an n2-tuple of variables representing the entries in the matrix Z and V (x, y, z, w) is a formula that expresses
Z ∈GLn(C) and Z

−1XZ = Y ; V stands here for ’variety’. In order to use the Gröbner basis machinery we wish
to rewrite V (x, y, z, w) as a finite conjunction of polynomials equal to 0.

First note that Z ∈ GLn(C) can be expressed as det(Z )̸= 0; introducing the variable w we have that the
polynomial wdet(Z) − 1 = 0 encapsulates that Z ∈ GLn(C). Moreover, it is clear that Z−1XZ = Y can be
rewritten as XZ − ZY = 0, where 0 = (0n×n, . . . , 0n×n) is a d-tuple of n × n zero matrices. After expanding
everything out, this last expression will give us dn2 polynomials fi(x, y, z) (1 ≤ i ≤ dn2) equal to 0.

We therefore see that V (x, y, z, w) is (wdet(Z)(z) − 1 = 0) ∧ (
∧dn2

i=1 fi(x, y) = 0), where det(Z)(z) indicates
that det(Z) is just a polynomial in the variables z . Hence the 0-definable formula E(x, y) that we started with is

∃z∃w (w · det(Z)(z)− 1 = 0) ∧

dn2∧
i=1

fi(x, y, z) = 0

 .

This gives us dn2 + 1 polynomials in C[w, z, x, y]. Let now J = ⟨f0, f1, . . . , fdn2⟩ be the ideal in C[w, z, x, y]
generated by f0 = wdet(Z)− 1 and the polynomials fi(1 ≤ dn2) arising from XZ − ZY = 0 as described above.
We will call the set of polynomials {wdet(Z)− 1, f1, . . . fdn2} = {f0, f1, . . . , fdn2} the set of initial generators of
the ideal J.

To see why we have introduced the ideal J , let first α ∈ Cdn2

be the tuple representing the entries of the
matrices in the concrete tuple Y = A. Consider now the specialization of y to α, σα : C[w, z, x, y] −→ C[w, z, x]
given by σα(f(w, z, x, y)) = f(w, z, x, α). By specializing all the initial generators of the ideal J we obtain the
ideal Jα = ⟨σα(J)⟩ = ⟨σα(f0), σα(f1), . . . , σα(fdn2)⟩ ◁ C[w, z, x].

From here onwards the aim is to find the reduced Gröbner basis of the vanishing ideal of (the Zariski closure of)
the equivalence class of y = α with respect to some fixed monomial ordering ≻. We will fix some more notation
and we will let Iα be the vanishing ideal of the equivalence class of y = α. More explicitly, we define:

Iα = {f ∈ C[x] : f(β) = 0 , ∀β in the Zariski closure of the equiv. class of α}.

Fix now an elimination ordering for w, z as defined in 2.1.4. The next task is to find generators for the ideal
Hα = Jα ∩ C[x], whose zero set V(Hα) is the Zariski closure of the equivalence class of y = α. To do this we
eliminate the variables w, z from the ideal Jα. Geometrically, this corresponds to taking the Zariski closure of
the projection of V(Jα) onto the coordinates x when regarding V(Jα) as a variety sitting in the complex affine

space C|w|+|z|+|x|, so that V(Hα) = π|x|(V(Jα))
Zar

, where π|x| : C
|w|+|z|+|x| :−→ C|x| is the projection onto the

coordinates x. Thus:

V(Hα)
corresponds to←−−−−−−−−→

Zariski closure of the
equivalence class of A ∈
Md

n(C) under ∼d with
entries α

Remark 3.0.2. Since any equivalence relation on a set S induces a partition on the set S, the varieties corresponding
to the different equivalence classes of Md

n(C) under ∼d (for explicit correspondence see above) will uniquely
determine them (proof below), and so the reduced Gröbner basis of each of the vanishing ideals of these varieties
will uniquely determine the equivalence classes of Md

n(C) under ∼d (uniqueness follows from the Gröbner bases
being reduced).

Before giving the proof of 3.0.2 we need a topological lemma:
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Lemma 3.0.3. Let X be any topological space and let C ⊆ X be a constructible set. Then the frontier C\C of C
is not dense in C.

Proof. We may replace X by C and assume that C is dense in X. Write C = ∪ni=1Ai ∩Oi with n ≥ 1, Oi ⊆ X
open and non-empty and Ai ⊆ X closed. Let O be minimal among non-empty intersections of the O1, . . . , On.
Then for each i ∈ {1, . . . , n} we have O ⊆ Oi or Oi ∩O = ∅. After a permutation of {1, . . . , n} we may assume
that C ∩O = ∪ki=1Ai ∩O for some k ∈ {1, . . . , n}. It follows that C ∩O is closed in O. On the other hand C is
dense in X and O is open in X, which implies that C ∩O is dense in O. Consequently C ∩O = O, i.e. O ⊆ C.
Since O ̸= ∅, the set X\C is not dense in X. □

Proof. We want to show that different equivalence classes of Md
n(C) under ∼d have different Zariski closures.

Let E(x, y) be the formula defining our equivalence relation and let A and B be two equivalence classes defined

by E(x, α) and E(x, β), respectively. It suffices to show that the closure map
Zar

: C|x| −→ C|x| given by

A 7→ A
Zar

is injective. Note that both A and B are quantifier-free definable in the theory of algebraically closed
fields, so in particular E(x, α) is a boolean combination of polynomials equal to zero with coefficients given by α,
which in turn implies that A is a boolean combination of Zariski closed sets, hence a constructible set. Suppose

now that A
Zar

= B
Zar

. By the topological lemma 3.0.3 we know that B is not dense in the frontier A
Zar\A of A

and since B ⊂ AZar
, it follows that B ∩A, so A ∩B ≠ ∅. But A and B are equivalence classes, so that A = B,

completing thus the proof. □

In order to find generators for Hα, we need first a Gröbner basis G1 for Jα; by the Elimination Theorem 2.1.12
the set of polynomials

G2 = G1 ∩ C[x]
is a Gröbner basis for Hα and hence a generating set for Hα. More precisely, due the choice of an elimination
ordering, we can write G2 explicitly as:

G2 = {f ∈ G2 : lm(f) ∈ C[x]}.
As G2 is a Gröbner basis for Hα, we have that Hα = ⟨G2⟩. This is thus the reason for the choice of an elimination
ordering and for finding a Gröbner basis G1 for Jα, as it facilitates the elimination of the variables w, z to obtain
generators for Hα.

It is now the moment of presenting the punchline of this strategy. Recall that the zero set V(Hα) of Hα

is precisely the Zariski closure of the equivalence class of y = α and what we are looking for is the reduced
Gröbner basis of the vanishing ideal of this equivalence class, i.e I(V(Hα)). As C is an algebraically closed, by the
Nullstellensatz 2.2.5 we have that I(V(Hα)) =

√
Hα, and so finding the reduced Gröbner basis of Iα is equivalent

to finding the reduced Gröbner basis of
√
Hα.

By Remark 3.0.2 it follows that Fd(α) (where Fd : Cdn2 −→ Ck is the invariant that we are looking for) will be
a vector of length k consisting of the coefficients of the polynomials in the reduced Gröbner basis of Iα =

√
Hα,

i.e. the vanishing ideal of the Zariski closure of the equivalence class of α.

3.1. Application of the Gröbner Cover to the solution. In this subsection we will discuss both the theory
of the Gröbner Cover and its application to our situation. For a complete treatise of the topic, we refer to the
paper by Montes and Wibmer [MW10] and in particular to Montes’ book [Mon18].

Recall from the explanation of the steps given above that we start by choosing a concrete value y = α; what
this implies is that the Gröbner basis of Jα, and hence the reduced Gröbner basis of Iα, obviously depend highly
on this concrete value. In particular, if we choose a different value y = β, then the reduced Gröbner basis for Iβ
might be completely different from the reduced Gröbner basis of Iα, not only in the coefficients of the polynomials
in it but also in the number of polynomials and their ”form” (”form” meaning what are exactly these polynomials).
Moreover, one of the aims of this paper is to fully describe the function Fd, and so far the procedure described
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above only gives a recipe to obtain a concrete vector in Ck that bijectively corresponds to the equivalence class of

y = α, namely Fd(α). The strategy now is to have a stratification of the domain Cdn2

into subsets Si such that
for each Si and for all α ∈ Si the reduced Gröbner basis of the ideal Iα ◁ C[x] ”looks the same”; this is where the
Gröbner Cover comes into play.

To make precise what we mean we start formalizing the situation by letting K be a computable field (e.g.
Q) and by fixing a parametric ideal Ia ◁ (K[a])[x], together with a monomial ordering ≻x on the variables x .
(K[a])[x] is the polynomial ring in the variables x and coefficients in K[a]; we will call a the parameters, which

later will take values from the parameter space K
|a|
. We consider K

|a|
as a topological space equipped with the

K-Zariski topology, so that a subset of K
|a|

is closed if and only it is of the form V(S) for some subset S ⊆ K[a].
The goal of the Gröbner Cover theory is to fully describe the reduced Gröbner basis of Iα = ⟨σα(Ia)⟩ (with respect

to ≻x) depending on α ∈ K |a|
, where σα : (K[a])[x] −→ K[x] is the specialization of a to α.

The partition of the parameter space will be given by a special kind of subsets of K
|a|
, namely:

Definition 3.1.1. A subset S of K
|a|

is said to be locally closed if and only if it is the intersection of a closed
and an open set; equivalently S is locally closed if and only if it is open in its closure.

We will require also the notion of a regular function and the closely related I-regular function:

Definition 3.1.2. We say that a function f : S −→ K is regular if and only if for every α ∈ S there exists an

open neighbourhood U ⊂ S of α such that f(β) = p(β)

q(β)
for all β ∈ U , where p, q ∈ K[a] and q(β) ̸= 0 for all

β ∈ U .

Definition 3.1.3. Let S be a locally closed subset of K
|a|
. We say that a function f : S −→ K[x] is Ia-regular if

and only if for each α ∈ S there exists an open neighbourhood U ⊂ S of α such that f(β) = p(β,x)

q(β)
for all β ∈ U ,

where p ∈ Ia ◁ (K[a])[x] and q ∈ K[a] with q(β) ̸= 0 for all β ∈ U .

It is now time to present how to associate the reduced Gröbner basis of an ideal to each of the subsets that will
partition our parameter space. This is realised via the following definition:

Definition 3.1.4. A locally closed subset S ⊂ K |a|
is called parametric for Ia (with respect to ≻x) if and only if

there exist monic Ia-regular functions g1, . . . , gr such that {g1(α, x), . . . , gr(α, x)} is the reduced Gröbner basis of
Iα for all α ∈ S. We then say that {g1(α, x), . . . , gr(α, x)} is the reduced Gröbner basis of Iα over S.

We are now in a position where we can finally define:

Definition 3.1.5. A Gröbner Cover of K
|a|

with respect to Ia and ≻x is a finite set of pairs {(S1, B1), . . . (Sr, Br)}
such that:

• For each 1 ≤ i ≤ r, Si is parametric for Ia and Bi is the reduced Gröbner basis of Ia over Si

•
⋃r

i=1 Si = K
|a|
.

In this situation we say that the Si are the segments of the Gröbner Cover.

Note that in this definition it is not required that the segments of the Gröbner Cover are disjoint, nor it is
ensured a priori that such a Gröbner Cover for a fixed ideal and monomial ordering exists, and if it does it doesn’t
require for it to be unique. However, all this requirements are proven to be satisfied in [Mon18, p.80-86], where it
is shown that:

Theorem 3.1.6 (Theorem 5.9 in [Mon18]). If Ia ◁ (K[a])[x] is homogeneous (with respect to the variables), then

there exists a unique Gröbner Cover {(S1, B1), . . . (Sr, Br)} of K
|a|

with cardinality r minimal which we call the
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Canonical Gröbner Cover of K
|a|

(with respect to I(a) and ≻x). It is disjoint and two points α, β ∈ K |a|
lie in

the same segment if and only if LT≻x
(Iα) = LT≻x

(Iβ).

This theorem can be applied to give a definition of the Canonical Gröbner Cover for arbitrary ideals:

Definition 3.1.7. Let Ia ◁ (K[a])[x] be an arbitrary ideal and let Ja ◁ (K[a])[x, x0] denote its homogenization.

By [Mon18, p. 87, Proposition 5.11], the segments of the Canonical Gröbner Cover of K
|a|

with respect to Ja and

≻x,x0
are parametric with respect to Ia and ≻x. The disjoint Gröbner Cover of K

|a|
with respect to Ia and ≻x

thus obtained will be called the Canonical Gröbner Cover of K
|a|

with respect to Ia and ≻x.

From now onwards we will adapt the same convention as in Montes’ book and we will refer to the Canonical
Gröbner Cover of our parameter space as simply the Gröbner Cover of our parameter space.

Equipped with the theory we can now apply it to our situation. In order to use the Gröbner Cover machinery
we have to translate the problem to the parametric ideal Ja ◁ (Q[a])[w, z, x]; we regard the variables y as our

parameters a which later will take values from the parameter space K
|a|

= Cdn2

. Fix also an elimination ordering
≻elim for w, z on the variables w, z, x.

We now introduce a modification of Definition 3.1.4, namely:

Definition 3.1.8. A locally closed subset S ⊂ K |a|
is called radically parametric for Ia (with respect to ≻x) if

and only if there exist monic
√
Ia-regular functions g1, . . . , gr such that {g1(α, x), . . . , gr(α, x)} is the reduced

Gröbner basis of
√
Iα for all α ∈ S. We then say that {g1(α, x), . . . , gr(α, x)} is the reduced Gröbner basis of

√
Iα

over S.

We now can define the radical version of the Gröbner Cover:

Definition 3.1.9. A radical Gröbner Cover of K
|a|

with respect to Ia and ≻x is a finite set of pairs of the form
{(S1, B1), . . . (Sr, Br)} where:

• For each 1 ≤ i ≤ r, Si is radically parametric for Ia and Bi is the reduced Gröbner basis of
√
Ia over Si

•
⋃r

i=1 Si = K
|a|
.

It would be desired to show existence of such a radical Gröbner Cover for a given parametric ideal and monomial
ordering. Instead, we use this idea to give the definition of a similar concept:

Definition 3.1.10. A radical Gröbner Patch of K
|a|

with respect to Ia and ≻x is a finite set of pairs
{(S1, B1), . . . (Sr, Br)} such that:

• For each 1 ≤ i ≤ r, Bi = {g1(α, x), . . . , gl(i)(α, x)} is the reduced Gröbner basis of
√
Ia for all α ∈ Si.

•
⋃r

i=1 Si = K
|a|
.

Note that the difference between the radical Gröbner Cover and the radical Gröbner Patch is that the former
requires the polynomials in Bi to be monic

√
Ia-regular functions, while the latter does not. In the last subsection

on the definability of Gröbner Bases 3.2 we show that the function Fd (for fixed d) induces a radical Gröbner
Patch for Ja ensuring thus existence of the radical Gröbner Patch for our situation.

Here is where we take a slightly different approach to the one discussed above when working only with the
specific choice y = α. Recall that in the steps needed to obtain the reduced Gröbner basis of Iα we had to proceed
as indicated in the diagram below:

Jα Hα

√
Hα

elim. var. radical
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By definition of Hα, this can be re-expressed as:

Jα Jα ∩ C[x]
√
Jα ∩ C[x]elim. var. radical

In order to make use or the radical Gröbner Patch to give a full description of the function Fd we will instead
consider the following:

Jα
√
Jα

√
Jα ∩ C[x]radical elim. var.

The key thing to note is that both approaches give the same result; C[x] is trivially radical, so that
√
Jα∩C[x] =√

Jα ∩
√
C[x], but then it follows from basic properties of radical ideals that

√
Jα ∩

√
C[x] =

√
Jα ∩ C[x] .

Applying this to our problem, what we first do is find a radical Gröbner Patch {(S1, B1), . . . (Sr, Br)} of Cdn2

with respect to Ja and ≻elim; this radical Gröbner Patch gives us a stratification of Cdn2

such that the reduced
Gröbner basis of

√
Jα ◁ C[w, z, x] is Bi(α) for each α ∈ Si. By the Elimination Theorem 2.1.12 we know that the

reduced Gröbner basis of
√
Jα ∩ C[x] is Bi(α) ∩ C[x] for each α ∈ Si, and by the argument above we know that

this is precisely the reduced Gröbner basis of Iα =
√
Hα for each α ∈ Si.

In terms of how to construct more explicitly our function Fd, we can write it as a piecewise function given by:

Fd(α) =


f1(α) if α ∈ S1

f2(α) if α ∈ S1

...

fr(α) if α ∈ Sr

where each fi(α) is a k-vector in C
k (k depending on α) whose entries are the coefficients of the polynomials of

the reduced Gröbner basis Bi(α) ∩ C[x] of Iα.

3.2. Definability of Gröbner basis. Throughout this section, fix n ∈ N and a global monomial ordering ≻ on
x.

Lemma 3.2.1. Let d ∈ N. Then there is some B ∈ N such that for each field K and every ideal I of K[x] that
is generated by d polynomials of total degree at most d, there is a reduced Gröbner basis of I for ≻, consisting of
at most B polynomials of total degree at most B.

Proof. From the existence of Gröbner bases, we see that there is some B ∈ N (namely, one may choose
B = max{totdeg(g1), . . . , totdeg(gs), s}, where {g1, . . . , gs} is a Gröbner basis for I w.r.t ≻) with the required
properties for Gröbner bases. By the existence proof for reduced Gröbner bases (cf. [CLO15, p. 93, Theorem 5])
we see that the bound B is also sufficient for our assertion. □

Lemma 3.2.2. Let φ(x, y) be a formula in the language of rings. Then there is some D ∈ N such that for
all algebraically closed fields K and all b ∈ K |y|, the ideal of K[x] of all polynomials that vanish on φ(K, b) is
generated by at most D polynomials of total degree at most D.

Proof. By model completeness of algebraically closed fields, there are finitely many polynomials Pi(x, y, z), (1 ≤
i ≤ l), with integer coefficients such that φ is equivalent to the formula ∃z

∧l
i=1 Pi(x, y, z) = 0. We extend our

global monomial order to an elimination order ≻elim of monomials in variables x, z for z. By 3.2.1 applied to
the maximal total degree d of the Pi there is some B ∈ N such that for each field K and every b ∈ K |y|, there
is a Gröbner basis of the ideal Jb = ⟨Pi(x, b, z)⟩i=1,...,l of K[x, z] of size at most B all whose polynomials are of
total degree at most B. As ≻elim is an elimination order for z, the variety defined by Ib = Jb ∩K[x] is the Zariski
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closure of φ(K, b) in K |x|, provided K is algebraically closed (cf. [CLO15, p. 199, Theorem 4] or [GP08, p. 96,
Section 1.8.2]). Hence we have degree bounds and a bound on the size of generators of the Ib. But then we also

get bounds on number and degrees of generators of
√
Ib; cf. [GP08, p. 77, Section 1.8.6] (using Rabinowich’s

trick). Since K is algebraically closed,
√
Ib is the ideal of K[x] of all polynomials that vanish on φ(K, b). □

Lemma 3.2.3. Let d ∈ N and let P (x, z) be the general polynomial over Z in the variables x of degree at most d,
i.e.

P (x, z) =
∑

deg(m)≤d

zm ·m

where m ranges over monomials in x (note that z is therefore a tuple of length
(
n+d
n

)
, corresponding to the number

of monomials in n variables of degree at most d). Then for each k ∈ N there is a formula β(z1, . . . , zk) in the
language of rings such that for all fields K and all b1, . . . , bk ∈ K |z| we have K |= β(z1, . . . , zk) if and only if
G = {P (x, b1), . . . , P (x, bk)} is a reduced Gröbner basis (i.e., the reduced Gröbner basis of the ideal generated by
P (x, b1), . . . , P (x, bk) for the given global monomial ordering.)

Proof. It is clear that the condition of lc≻(P (x, bi)) = 1 for each 1 ≤ i ≤ k is elementary (i.e., it is formulated
using only finite first-order logic). Showing that each of the P (x, bi) are reduced with respect to all other P (x, bj)

(i ̸= j) is equivalent (by definition of reduction of polynomials) to showing that for each P (x, bi), no monomial
occurring in P (x, bi) lies in LT(G\{P (x, bi)}), but this is elementary because membership in the ideal of leading
terms is elementary using the solution of the membership problem for ideals (cf. [DS84, p. 78, item (I)]).

Finally, defining the property of G being a Gröbner basis in terms of a formula of the language of rings can be
done using Buchberger’s Criterion (cf. [CLO15, p.86, Theorem 6]). □

Proposition 3.2.4. Let φ(x, y) be a formula in the language of rings. Then there are d, k ∈ N and a formula
γ(y, z1, . . . , zk) in the language of rings such that for the general polynomial P (x, z) over Z in the variables x of
degree at most d as in 3.2.3, the following hold true in every algebraically closed field K:

• For every b ∈ K |y| there exist elements c1, . . . , ck ∈ K |z| such that the set {P (x, c1), . . . , P (x, ck)} is the
reduced Gröbner basis for ≻ of the ideal of K[x] of all polynomials that vanish on φ(K, b).
• For all b ∈ K |y|, c1, . . . , ck ∈ K |z| we have that K |= γ(b, c1, . . . , ck) if and only if the set of polynomials
{P (x, c1), . . . , P (x, ck)} is the reduced Gröbner basis for ≻ of the ideal of K[x] of all polynomials that
vanish on φ(K, b).

Proof. Take D ∈ N for φ(x, y) as in 3.2.2. Then take B for n and D as in 3.2.1. Thus we know that for every
algebraically closed field K and all b ∈ K |y|, the ideal of polynomials that vanish on φ(K, b) has a Gröbner basis
consisting of B elements, all of total degree at most B. Hence we may take d = k = B and get the first item.

Using the formula β(z1, . . . , zk) from 3.2.3 we define γ as required for the second item as follows: By the
solution of the ideal membership problem (cf. [DS84, p. 78, item (I)]), there is a formula ψ(y, z1, . . . , zk) in the
language of rings such that in every algebraically closed field K, each b ∈ K |y| and all c1, . . . , ck ∈ K |z| we have
K |= γ(b, c1, . . . , ck) if and only if the ideal generated by {P (x, c1), . . . , P (x, ck)} is the ideal generated by all
polynomials of degree at most D that vanish on φ(K, b). Now we may take γ as β(z1, . . . , zk)∧ψ(y, z1, . . . , zk). □

3.2.5. Coding Zariski closures. Let φ(x, y) be a formula in the language of rings. Choose d, k ∈ N, the

polynomial P (x, z) and a formula γ as in 3.2.4. Let m =
(
n+d
n

)
.

Let K be an algebraically closed field and let F = F1 × · · · × Fk : K |y| −→ (Km)k be the following function:
Pick b ∈ K |y| and take f1(x), . . . , fl(x) ∈ K[x] such that {f1(x), . . . , fl(x)} is the reduced Gröbner basis of
the vanishing ideal of φ(K, b) with LT(f1) ≻ . . .LT(fl). Notice that the fi are uniquely determined by this
requirement, and so by 3.2.4 there are c1, . . . , ck ∈ K |z| with {f1(x), . . . , fl(x)} = {P (x, c1), . . . , P (x, ck)}.
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Then we define Fi(b) ∈ Km as follows: If i > l, then Fi(b) = 0. If i ∈ {1, . . . , l}, then Fi(b) lists the coefficients
of fi, indexed by monomials in x in the order of monomials as given by ≻. It is then clear that for all b1, b2 ∈ K |y|

we have F (b1) = F (b2) if and only if φ(K, b1) and φ(K, b2) have the same Zariski closure.

Using the formula γ it is straightforward to find a formula δ(y, v1, . . . , vk) in the language of rings, where vi
are m-tuples of variables, which defines the graph of the function F in every algebraically closed field K.

We finally can give the proof of the existence of the radical Gröbner Patch 3.1.10 for our problem in hand:

Proof. By quantifier elimination for algebraically closed fields of characteristic 0, we know that every 0-definable
function can be written as a piecewise rational map (cf. [Mar02, Proposition 3.2.14]); in particular the function
F : K |y| −→ (Km)k defined in subsection 3.2.5, which is 0-definable, can be represented as a piecewise rational
map. More precisely, there exist 0-definable locally closed sets S1, . . . , Sp ∈ K |y| that partition K |y| where

Sj = {Rj = 0 and Tj ≠ 0 |Rj , Tj ∈ Z[x1, . . . , xm]} for each 1 ≤ j ≤ p, such that for all α ∈ K |y|, if α ∈ Sj , then

fi(α) =
Hi(α)
Qi(α)

for 1 ≤ i ≤ l. Therefore, using the description of the fi given by the general polynomial we have

that:

F (α) =


F1(α)
F2(α)

...
Fk(α)


where Fi(α) lists the coefficients of the polynomial

∑
deg(m)≤d

Fi,m(α) ·m =
∑

deg(m)≤d

Hj,i,m(α)

Qj,i,m(α)
·m.

Here
Hj,i,m(α)
Qj,i,m(α) indicates that this coefficient depends on α, the locally closed set Sj to which α belongs to, the

polynomial fi and the monomial m.

It is now left to show that each of the Sj (1 ≤ j ≤ p), which is a definable set, can be partitioned into a finite
disjoint union of locally closed sets. By quantifier elimination for algebraically closed fields, every definable set is
a boolean combination of locally closed sets. We shall show first that any boolean combination of locally closed
sets is a constructible set and then that constructible sets are finite disjoint union of locally closed sets.

Let C be the collection of all constructible sets (i.e. the ones which are a finite union of locally closed sets) and
L the collection of all locally closed sets of K |y|. It is readily verified that C is a Boolean algebra (as it is closed
under complements, finite unions and intersections) and that L ⊆ C. On the other hand, if the Boolean algebra A
contains L, then it contains the finite union of locally closed sets, so that C ⊆ A and so C is the Boolean algebra
generated by L, proving thus the first assertion.

Let now K =
⋂n

i=1(Oi∪Ai) be a constructible set, where Oi is open and Ai is closed. We show by induction on n
that K can be expressed as a disjoint union of locally closed sets. If n = 1, note that K = O1∪A1 = (O1\A1)∪̇A1,
so the base case holds. Suppose that the statement holds for k ∈ N. Let Li (1 ≤ i ≤ k) be locally closed sets and
note that for k + 1 we have:

K = (O0 ∪A0) ∩
k⋂

i=1

(Oi ∪Ai)

= (O0 ∪A0) ∩
⋃̇r

i=1
Li (by inductive hypothesis)

=
⋃̇r

i=1
Li ∩ (O0 ∪A0). (2)
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Note that (O0 ∪A0) is the complement of a locally closed set. To show the second assertion it is enough then
to show that for locally closed sets L and L′ in a topological space X, L ∩ (X\L′) is a finite disjoint union of
locally closed sets; this together with 2 completes the induction and hence the proof. Indeed, let L = O ∩A and
X\L′ = O′ ∪A′ with O,O′ open and A,A′ closed. Then:

L ∩ (X\L′) = (O ∩A) ∩ (O′ ∪A′)

= (O ∩O′ ∩A) ∪ (O ∩A ∩A′)

= ((O ∩O′ ∩A) ∩ (X\A′))
⋃̇

(O ∩A ∩A′).

□

4. Bounds

In this section we will explore the upper bounds for the cardinality of the reduced Gröbner basis of Iα and for
the maximal degree of all polynomials in it. The aim is to give an upper bound for k ∈ N, the natural number

determined by the function Fd : Cdn2 → Ck that we are looking for. First we will fix some notation.

Definition 4.0.1. Let K be a field and I ◁ K[x1, . . . , xm] be an ideal. Define the degree of the reduced Gröbner
basis of I with respect to a monomial ordering ≻ to be:

deg(GI,≻) := max{deg(f) : f is in the red. Gröbner basis GI,≻ of I wrt ≻}

Set also m := (d+ 1)n2 + 1, i.e. the number of variables in the polynomial ring C[w, z, x] over which we will be
working with first.

4.1. Upper bound for the degree of the reduced Gröbner basis of Iα. The bound we present here depends
on the dimension of the ideal Jα as defined in 2.1.2 and on the dimensions of the problem given by the number of
variables m. We use the following bound obtained by Mayr and Ritscher in [MR13, p. 92, Theorem 36]:

Theorem 4.1.1. Let K be an infinite field and fix a monomial ordering ≻. Let I be an arbitrary ideal of
dimension r in K[x1, . . . , xm] generated by polynomials f1, . . . , fs of degrees d1 ≥ · · · ≥ ds. Then the degree of the
reduced Gröbner basis GI,≻ of I is bounded by:

deg(GI,≻) ≤ 2

(
1

2

(
(d1 . . . dm−r)

2(m−r)
+ d1

))2r

Adapting the above theorem to our situation, we set K = Q. The reason for this is that in order to bound
the maximal degree of generators of Iα we will later make use of Laplagne’s bound, which was obtained by
working over the computable field Q; the bound obtained here is therefore applicable to the functions Fd that can
be computed using our approach to the problem and not to all the functions whose existence emerge from the
theoretical solution of the problem.

We fix also an elimination ordering ≻elim; from now on we will write deg(GI) instead of deg(GI,≻elim
) for any

ideal I that we will be working with. We start by giving an upper bound for deg(GJα) by observing that all the
initial generators of Jα have degree 2 except the polynomial wdet(Z)−1, whose degree depends on the number of
variables. More precisely, if we let f1 = wdet(Z)− 1, then d1 = n+ 1 and d2 = d3 = · · · = ddn2+1 = 2, so that by
Theorem 4.1.1 we have:

deg(GJα) ≤ 2

(
1

2

(
((n+ 1)d2d3 . . . dm−r)

2(m−r)
+ (n+ 1)

))2r

= 2

(
1

2

((
(n+ 1)2m−r−1

)2(m−r)
+ n+ 1

))2r

(3)
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In order to ease the clarity of the following bounds, we simplify the expression 3 further by bounding it as
follows:

deg(GJα) ≤ 2

(
1

2

((
(n+ 1)2m−r−1

)2(m−r)
+ n+ 1

))2r

≤ 2

(
1

2

((
(n+ 1)m−r

)2(m−r)
+ n+ 1

))2r

(4)

= 2

(
1

2

(
(n+ 1)2(m−r)2 + n+ 1

))2r

≤ 2

(
1

2

(
(n+ 1)2(m−r)2 + (n+ 1)2(m−r)2

))2r

(5)

= 2

(
1

2

(
2(n+ 1)2(m−r)2

))2r

= 2
(
(n+ 1)2(m−r)2

)2r
= 2(n+ 1)2

r+1(m−r)2

Here 4 follows from 2 ≤ n+ 1 for all n ≥ 1 and 5 since clearly n+ 1 ≤ (n+ 1)2(m−r)2 . We therefore have that:

deg(GJα
) ≤ 2(n+ 1)2

r+1(m−r)2 (6)

The next step is bounding deg(GHα
). Recall that Hα was the ideal obtained by eliminating the variables w and

z from Jα. By 2.1.12 we know that a Gröbner basis for Hα is contained in GJα , so that the maximal degree of a
polynomial in a Gröbner basis for Hα is bounded above by deg(GJα). Since the maximal degree of all polynomials
in the reduced Gröbner basis of an ideal is at most the maximal degree of all polynomials in a given Gröbner
basis of this same ideal, we conclude that:

deg(GHα
) ≤ deg(GJα

) (7)

Combining 6 together with 7 he have that:

deg(GHα
) ≤ 2(n+ 1)2

r+1(m−r)2 (8)

Now we have to obtain an upper bound for the maximal degree of generators for Iα =
√
Hα, the radical of Hα.

To achieve this we will make use of the bound given by Laplange using the algorithm in [Lap06, p. 193, Algorithm
8] . Laplange showed that for an ideal I ◁ Q[x1, . . . , xt] in a polynomial ring with t variables generated by s

polynomials of maximal degree D, the maximal degree of the generators of
√
I is bounded above by (sD)2

O(t2)

.
Note that in his paper, Laplagne estimated the arithmetic complexity of his algorithm, from which this bound
automatically follows; hence the choice of a computable ground field for the polynomial ring.

In our case, s = |GHα
|, the cardinality of the reduced Gröbner basis of Hα, and D = deg(GHα

). Combining with

the above, we have that the maximal degree of generators for Iα is bounded by (|GHα
|deg(GHα

))2
O(m2)

. We point
out that the number of variables in this case is dn2 and not m, since only the variables x occur in the polynomials
of Hα; the choice of m in the expression instead of dn2 is only to ease clarity of the bounds (we can do this since
dn2 ≤ m by definition of m). Moreover, by the Elimination Theorem 2.1.12 it follows that |GHα | ≤ |GJα |. Thus,

(|GHα
|deg(GHα

))2
O(m2)

≤
(
2|GJα

|(n+ 1)2
r+1(m−r)2

)2O(m2)

(9)
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= (2|GJα
|)2

O(m2)
(
(n+ 1)2

r+1(m−r)2
)2O(m2)

= (2|GJα
|)2

O(m2)
(
(n+ 1)2

r+1+O(m2)(m−r)2
)

= (2|GJα |)
2O(m2)

(
(n+ 1)2

O(m2)(m−r)2
)

(10)

=
(
2|GJα |(n+ 1)(m−r)2

)2O(m2)

Here the equality in 10 follows from basic properties of the ”Big Oh” notation; the dimension r of the ideal Jα is
at most m, so that r + 1 +O(m2) ≤ m+ 1 +O(m2) = O(m2) and therefore r + 1 +O(m2) = O(m2).

Finally, we apply again Theorem 4.1.1 to the ideal Iα. In order to proceed, we note that we require the
dimension of the ideal Iα; it is not in our interest to give a bound for deg(GIα) in terms of the dimension of Iα as
it is not straightforward to compute it, so we will use the fact that dim(Iα)≤ dn2, where dn2 is the number of
variables in the polynomial ring over which Iα is defined. We in turn can set dim(Iα) ≤ m to ease clarity in the

bounds, since dn2 ≤ m by definition of m. Setting D =
(
2|GJα |(n+ 1)(m−r)2

)2O(m2)

we have that:

deg(GIα) ≤ 2

(
1

2

((
Ddn2−dim(Iα)

)2(dn2−dim(Iα))

+D

))2m

≤ 2

(
1

2

((
Ddn2

)2(dn2)

+D

))2m

≤ 2

(
1

2

(
(Dm)

2m
+D

))2m

≤ 2

(
1

2

(
D2m2

+D
))2m

≤ 2

(
1

2

(
D2m2

+D2m2
))2m

= 2

(
1

2

(
2D2m2

))2m

= 2D2m+1m2

So:

deg(GIα) ≤ 2

((
2|GJα

|(n+ 1)(m−r)2
)2O(m2)

)2m+1m2

= 2
(
2|GJα |(n+ 1)(m−r)2

)2O(m2)+m+1m2

= 2
(
2|GJα |(n+ 1)(m−r)2

)2O(m2)m2

(11)

Note that this bound depends on the dimension r of the ideal Jα, the dimensions of the problem given by
m = (d+ 1)n2 + 1 and the cardinality of GJα

. We can go further and give an upper bound for |GJα
| in terms

of the dimensions of the problem. For this we refer to [Lap06, p.194], where it’s stated that the general bound
for the number of polynomials in a Gröbner basis of an ideal in m variables over Q, generated by s polynomials

of maximum degree D is of order sO(1)D2O(m)

. In our situation, s = dn2 + 1 and D = n + 1, so we have the
following bound:
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|GJα
| ≤ (dn2 + 1)O(1)(n+ 1)2

O(m)

(12)

Combining 11 with 12 we get the upper bound for deg(GIα):

deg(GIα) ≤ 2
(
2
(
(dn2 + 1)O(1)(n+ 1)2

O(m)
)
(n+ 1)(m−r)2

)2O(m2)m2

= 2
(
2(dn2 + 1)O(1)(n+ 1)2

O(m)+(m−r)2
)2O(m2)m2

= 2
(
2(dn2 + 1)O(1)(n+ 1)1+(m−r)2

)2O(m2)m2

From this it is clear that the maximum degree of generators of the reduced Gröbner basis of Iα is at most of
order doubly exponential in the number of initial variables, as expected. Note that this bound depends only on
the dimensions of the problem (given by the number of variables) and the dimension of the ideal Jα, but we can
give an upper bound only in terms of the dimensions, by bounding above with the same expression but replacing
the exponent (m− r)2 by m2. We must mention that we cannot claim that the bounds obtained here are sharp
due to the simplification of expressions with clearer upper bounds. Finally, we also would like to point out that
the dimension of the ideal Jα appears to be n2; this is verified in computations for small values of the dimensions
(d, n) and it would be desired to verify this for all possible values of the dimensions of the problem.

4.2. Upper bound for the cardinality of the reduced Gröbner basis of Iα. To start this section we have
to refer again to [Lap06, p.194], where it’s stated that the general bound for the number of polynomials in a
Gröbner basis of an ideal in m variables over Q, generated by s polynomials of maximum degree D is of order

sO(1)D2O(m)

. It is clear that if G is a Gröbner basis of an ideal in a polynomial ring and G its reduced Gröbner
basis, then |G| ≤ |G|, so the bound above also applies to reduced Gröbner bases. Note that this bound holds
when the ground field of the polynomial ring is Q, therefore the bounds obtained in this section will be again only
applicable to the functions Fd that can be computed using our approach to the problem and not to the functions
whose existence emerge from the theoretical solution of the problem.

In our case, we start by bounding |GJα |, the number of polynomials in the reduced Gröbner basis of Jα. Recall
that Jα is generated by dn2 + 1 polynomials and their maximum degree is n+ 1; we therefore obtain the bound:

|GJα
| ≤ (dn2 + 1)O(1)(n+ 1)2

O(m)

We now want to bound |GHα
|. Recall that Hα was the ideal obtained by eliminating the variables w and z from

Jα. By 2.1.12 we know that a Gröbner basis for Hα is contained in GJα
, so that the cardinality of the reduced

Gröbner basis of Hα is at most |GJα
|, thus we can directly see that

|GHα
| ≤ (dn2 + 1)O(1)(n+ 1)2

O(m)

We now have to find an upper bound for the cardinality of the reduced Gröbner basis of Iα =
√
Hα. To achieve

this we will make use again of the bound given by Laplange using the algorithm in [Lap06, p. 193, Algorithm 8] .
Laplange showed that for an ideal I ◁Q[x1, . . . , xt] in a polynomial ring with t variables generated by s polynomials

of maximal degree D, the cardinality of the obtained Gröbner basis of
√
I by the algorithm is bounded above by

(sD)2
O(t2)

, and so this is also an upper bound for the cardinality of the reduced Gröbner basis of
√
I.

Noting that the polynomials of the reduced Gröbner basis of Hα generate Hα and that an upper bound for
the maximum degree of polynomials in the reduced Gröbner basis of Hα is given by 8 we can therefore give the
following upper bound for the cardinality of the reduced Gröbner basis of Iα:
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|GIα | ≤ (|GHα
|deg(GHα

))2
O((dn2)2)

We see that this quantity is bounded above by 9 since dn2 ≤ m and so it follows that the upper bound obtained
for deg(GIα) is also an upper bound for |GIα |; it doesn’t come as a surprise then that the number of polynomials
in GIα is at most double exponential in the number of initial variables.

Combining the bounds obtained for deg(GIα) and for |GIα | we can therefore bound k, recalling that k is the
number of coefficients in all polynomials in the reduced Gröbner basis of Iα. Since we can bound the maximum
number of polynomials in GIα by the bound obtained for deg(GIα) and as deg(GIα) is the maximum number of
coefficients in any polynomial of GIα it follows that we can bound k by:

k ≤

(
2
(
2(dn2 + 1)O(1)(n+ 1)1+(m−r)2

)2O(m2)m2
)2

5. Singular commands

In this section we exhibit the different procedures and commands used in Singular to produce a concrete output
for the solution of the problem, with their corresponding explanation and discussion. As discussed in 3, in order
to provide a complete description of the function Fd we have to make use of the (Canonical) radical Gröbner
Cover; this is however not yet implemented in Singular nor in any other Computer Algebra System, so it would
be desired to develop it in order to fully describe Fd. However we give the Singular implementation and steps
needed to compute Fd(α) hence giving a way of checking computationally if two d-tuples of n× n matrices over a
computable field are conjugate or not.

In order to improve the exposition of ideas in this section, we will append all the Singular code in A.

As stated in the home page of Singular (https://www.singular.uni-kl.de/),

Singular is a Computer Algebra System for polynomial computations, with special emphasis on
commutative and non-commutative algebra, algebraic geometry, and singularity theory. It is free
and open-source.

One can download the program following this link or if preferred there is the option of trying the terminal
online in https://www.singular.uni-kl.de:8003/. We want to note that the online server of Singular has
16GB of memory and Intel Xeon CPU, so any code run here will be limited by the characteristics of this machine.

For a complete explanation of the language and options available in Singular we refer to the online manual
of this CAS, that can be accessed via https://www.singular.uni-kl.de/index.php/singular-manual.html.
We also refer to the Greuel and Pfister book [GP08] for more examples and in particular to [GP08, p. 571, Section
C] for a concrete and concise introduction to Singular.

The first issue we have to deal with is the naming of the variables. If d = 1, we don’t work with tuples of
matrices and so we name the variables representing the entries of the matrices in the standard way, i.e. xij will
be the variable representing the entry in the ith row and jth column of the matrix X. If d > 1 we will use the
following convention: xkij will be the variable representing the entry in the ith row and jth column of the kth

matrix Xk in the tuple of matrices X. As an example, if (d, n) = (2, 3) we then have:

X = (X1, X2) =
((

x111 x112 x113
x121 x122 x123
x131 x132 x133

)
,
(

x211 x212 x213
x221 x222 x223
x231 x232 x233

))

https://www.singular.uni-kl.de/
https://www.singular.uni-kl.de/index.php/singular-download.html
https://www.singular.uni-kl.de:8003/
https://www.singular.uni-kl.de/index.php/singular-manual.html
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Since the approach we want to take should be applicable for different values of d and n, the first thing we
did is to create a Singular procedure called dimensions that sets up the polynomial ring over which all the
computations will be done and that creates the first ideal J generated by wdet(Z)−1 and the polynomials that
arise from XZ = ZY . dimensions is a procedure that takes two integer values, d and n, where d is the number
of entries in the tuples of matrices and n is the size of the square matrices as defined in 1. For our task in hand,
the polynomial ring with which we will be working with in Singular can have as a ground field Q or any algebraic
or transcendental extension of Q such as Q[i] or Q(π). From now onwards we restrict ourselves to take Q as a
base field, yet more exotic examples can be found in 6.

As an example, if after defining the procedure dimensions we type in the command line of Singular
dimensions(2,2); the ring over which the computations will be done will be Q[w, z, x, y], where the variables are
w, z, x, y, with z = (z11, z12, z21, z22), x = (x111, x112, x121, x122, x211, x212, x221, x222) and y = (y111, y112, y121, y122,
y211, y212, y221, y222).

There is also the issue of what monomial ordering to choose for our task, and here we also have two main
choices: we can either use any global monomial ordering such as the lexicographic ordering or we can work with an
elimination ordering, and both of them having advantages and disadvantages. By choosing a global ordering, we
have the possibility of working with the lexicographic ordering; this ordering has the advantage that the resulting
(reduced) Gröbner basis for Jα has very few polynomials compared to an elimination ordering or even any other
global monomial ordering. The issue with this choice is that in the step of elimination of variables we are forced
to use the built-in function eliminate in Singular, which is computationally expensive and it is not the most
straightforward way of proceeding with the elimination of variables. The other choice would be an elimination
ordering as described in 2.1.4, being an example the lexicographic elimination ordering for the variables w, z (note
that this is different from the global lexicographic ordering). With this choice of ordering, elimination variables is
very simple, but the cardinality of the resulting reduced Gröbner basis is considerably larger than if we choose
just the global lexicographic ordering. From now onwards we will choose an elimination ordering when writing
the corresponding Singular commands.

Before proceeding to discuss the Singular commands, we recall the tasks to be done in order to find Fd(α)
defined by the coefficients of the reduced Gröbner basis for Iα:

(1) Fix an elimination ordering ≻elim on our set of variables. Let J ◁ C[w, z, x, y] be the ideal generated

by wdet(Z)−1 and the polynomials arising from XZ = ZY . Choose α ∈ Cdn2

and obtain the ideal
Jα ◁ C[w, z, x] by specializing J via α.

(2) Compute the reduced Gröbner basis for Jα in order to proceed with the next step.
(3) Eliminate the variables w and z from Jα to obtain the ideal Hα = Jα ∩ C[x].
(4) Obtain a reduced Gröbner basis for Iα =

√
Hα.

(5) Collect in a vector the coefficients of the polynomials in the obtained reduced Gröbner basis of Iα. This

constitutes the code that defines the value of the function Fd at α ∈ Cdn2

.

5.1. Obtaining Fd(α) using Singular.

Step 1: The Set Up. As explained in the previous paragraphs, in order to start with the implementation of the
theory in Singular we make use of the dimensions procedure. However, before that we must load the different
libraries (this is, sets of procedures) that will enable us to proceed with the next steps. In particular, the first
thing that we do is type in the following commands in the Singular terminal:

LIB "primdec.lib";

LIB "poly.lib";

LIB "elim.lib";

option(redSB);
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The first three lines of command load the primdec.lib, poly.lib and elim.lib library files, while the last
command forces Singular to always output the reduced Gröbner basis in any computation with ideals after fixing
a monomial ordering on the variables.

After this we load our dimensions procedure into the terminal; to do this just copy and paste the code in the
terminal as it appears in subsection A.1 of the Appendix. We recall that we will restrict ourselves to work with Q
as a ground field and the lexicographic ordering for the variables w and z as a global elimination ordering; in case
that one wants to change the ground field or the global ordering this has to be done by tweaking some bits of
the code in the dimensions procedure. Instances of these can be found in the Appendix A together with some
worked examples in Section 6.

After having the libraries and the dimensions procedure loaded in the terminal, we can start working with
concrete values of d and n; choose d and n and type in the terminal:

dimensions(d,n);

substituting d and n in the command for the chosen values.

In order to see what is the ring over which the computations are done, type in the terminal basering; and to
see what are the objects with which you can work with and that are loaded in the terminal type in listvar();.
After choosing d and n and setting up the ring using the dimensions(d,n); command, one should have the
following objects loaded in the terminal: the positive integers d and n, the ring r over which one works with, the
matrices Y1, . . . , Yd from the tuple Y = (Y1, . . . , Yd) and the initial ideal J , the one generated by wdet(Z)− 1 and
the polynomials arising from XZ − ZY = 0.

Step 2: Choosing α and obtaining Jα and its reduced Gröbner basis. In this step we choose the α in our ground

field for which we want to obtain Fd(α). Recall that α is nothing but a vector of length dn2 representing the
entries of all the matrices in the concrete matrix tuple of which we want to know the code for its equivalence
class. In this implementation in Singular we will work with the concrete matrix tuple A = (A1, . . . , Ad) and not
with α; in particular, the next thing to type in the terminal are the matrices A1, . . . , Ad of our tuple A as follows:

matrix A_(1)[n][n]= - , -, ..., -;

matrix A_(2)[n][n]= - , -, ..., -;

...

matrix A_(d-1)[n][n]= - , -, ..., -;

matrix A_(1)[n][n]= - , -, ..., -;

Here one has to replace d and n with the values chosen in Step 1 and the dashes by the entries of each matrix
(read as usual from left to right and starting from the top row). For example, if we have chosen d = 2 and n = 3
and we choose as a concrete matrix tuple

A = (A1, A2) =

((
1 −2 3
−4 5 −6
7 −8 9

)
,

(
1 2

3
5
8

13
21

34
55

89
144

233
377

610
987

1597
2584

))
then the Singular commands would be:

matrix A_(1)[3][3]= 1, -2, 3, -4, 5, -6, 7, -8, 9;

matrix A_(2)[3][3]= 1, 2/3, 5/8, 13/21, 34/55, 89/144, 233/377,

610/987, 1597/2584;
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We can now substitute the entries of these matrices for the variables y (corresponding to the tuple of matrices
Y ) in the initial generators of the ideal J obtaining thus the specialized ideal Jα. This is done by copying and
pasting in the terminal the commands in subsection A.2; after this step the specialized ideal is named J_a and if
we type J_a; we can see the list of polynomials that constitute the reduced Gröbner basis of Jα with respect to
the chosen monomial ordering.

Step 3: Eliminate the variables w and z. Having the reduced Gröbner basis of Jα we can apply the Elimination
Theorem 2.1.12; this is done by picking the generators that do not contain the variables w and z. The
implementation in Singular of this step is realised via de command:

ideal H_a = nselect(J_a, 1..n^2+1);

Note that these n2 + 1 variables that we want to eliminate from Jα come first in our definition of elimination
ordering (third line in the commands of subsection A.1).

Step 4: Obtain the reduced Gröbner basis of Iα. This is the most straightforward step as it only involves computing
the radical of Hα. This is done using the command:

ideal I_a = groebner(radical(H_a));

And we’re done; to see what is the reduced Gröbner basis of Iα with respect to our monomial ordering we just
type I_a; in the terminal. From here onwards if we want to check if another matrix tuple B is in the equivalence
class of A, we proceed with Steps 2, 3 and 4 with this new matrix tuple by replacing any occurrence of A and a by
B and b respectively in the presented code, and we check if the reduced Gröbner basis of Iβ is the same as the

reduced Gröbner basis of Iα, where β is the vector corresponding to the entries of the matrix tuple B.

6. Worked examples

Here we give a couple of concrete results of the steps described in Section 5 as an illustrative example of the
Singular commands. We would like to note that computations for the cases (d, n) = (1, 2) and (d, n) = (2, 2) are
relatively fast and do give a result; however once we have d = 2 and n ≥ 3, the computations blow up and so far
we haven’t obtained any result for these cases. Moreover, it seems that an increase in n has a greater impact on
the computer calculations with respect to an increase in d.

6.1. Examples with d = 1. As a first example, we choose n = 2 and we take Q as a ground field for our
polynomial ring; we check if the matrices

A =
( −2

3
6
5

−7
8

−62
8

)
and B =

(
0 −71

4
−34
9

77
8

)
are in the same ∼d-equivalence class. As usual, α and β are vectors corresponding to the entries of the matrices
A and B respectively. After running all the steps, the outputs are:

> I_a;

I_a[1]=60*x_(1)(2)*x_(2)(1)+60*x_(2)(2)^2+505*x_(2)(2)+373

I_a[2]=12*x_(1)(1)+12*x_(2)(2)+101

and
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> I_b;

I_b[1]=72*x_(1)(2)*x_(2)(1)+72*x_(2)(2)^2-693*x_(2)(2)-4828

I_b[2]=8*x_(1)(1)+8*x_(2)(2)-77

so that the reduced Gröbner basis of the vanishing ideals Iα and Iβ are

{60x12x21 + 60x222 + 505x22 + 373, 12x11 + 12x22 + 101}

and

{72x12x21 + 72x222 − 693x22 − 4828, 8x11 + 8x22 − 77}

respectively, and so clearly A ̸∼d B.

We now give an example where both matrices are trivially in the same ∼d-equivalence class. We choose now
n = 3 and Q(π, e) as our ground field. Take our matrices to be

A =

( −5π
3 0 0
0 7e 0
0 0 4π

13

)
and B =

(
7e 0 0
0 4π

13 0

0 0 −5π
3

)
The corresponding outputs for this example are

> I_a;

I_a[1]=39*x_(1)(3)*x_(2)(1)^2*x_(3)(2)

-39*x_(1)(3)*x_(2)(1)*x_(2)(2)*x_(3)(1)

+39*x_(1)(3)*x_(2)(1)*x_(3)(1)*x_(3)(3)-39*x_(1)(3)*x_(2)(3)*x_(3)(1)^2

+39*x_(2)(1)*x_(2)(2)*x_(2)(3)*x_(3)(2)

+78*x_(2)(1)*x_(2)(3)*x_(3)(2)*x_(3)(3)

+(53*pi-273*e)*x_(2)(1)*x_(2)(3)*x_(3)(2)+39*x_(2)(1)*x_(3)(3)^3

+(53*pi-273*e)*x_(2)(1)*x_(3)(3)^2

+(-20*pi^2-371*pi*e)*x_(2)(1)*x_(3)(3)+(140*pi^2*e)*x_(2)(1)

-39*x_(2)(2)^2*x_(2)(3)*x_(3)(1)-39*x_(2)(2)*x_(2)(3)*x_(3)(1)*x_(3)(3)

+(-53*pi+273*e)*x_(2)(2)*x_(2)(3)*x_(3)(1)-39*x_(2)(3)^2*x_(3)(1)*x_(3)(2)

-39*x_(2)(3)*x_(3)(1)*x_(3)(3)^2+(-53*pi+273*e)*x_(2)(3)*x_(3)(1)*x_(3)(3)

+(20*pi^2+371*pi*e)*x_(2)(3)*x_(3)(1)

I_a[2]=39*x_(1)(2)*x_(2)(3)*x_(3)(1)+39*x_(1)(3)*x_(2)(1)*x_(3)(2)

-39*x_(1)(3)*x_(2)(2)*x_(3)(1)+39*x_(1)(3)*x_(3)(1)*x_(3)(3)

+39*x_(2)(2)*x_(2)(3)*x_(3)(2)+78*x_(2)(3)*x_(3)(2)*x_(3)(3)

+(53*pi-273*e)*x_(2)(3)*x_(3)(2)+39*x_(3)(3)^3+(53*pi-273*e)*x_(3)(3)^2

+(-20*pi^2-371*pi*e)*x_(3)(3)+(140*pi^2*e)

I_a[3]=39*x_(1)(2)*x_(2)(1)+39*x_(1)(3)*x_(3)(1)+39*x_(2)(2)^2

+39*x_(2)(2)*x_(3)(3)+(53*pi-273*e)*x_(2)(2)+39*x_(2)(3)*x_(3)(2)

+39*x_(3)(3)^2+(53*pi-273*e)*x_(3)(3)+(-20*pi^2-371*pi*e)

I_a[4]=39*x_(1)(1)+39*x_(2)(2)+39*x_(3)(3)+(53*pi-273*e)

and

> I_b;

I_b[1]=39*x_(1)(3)*x_(2)(1)^2*x_(3)(2)

-39*x_(1)(3)*x_(2)(1)*x_(2)(2)*x_(3)(1)

+39*x_(1)(3)*x_(2)(1)*x_(3)(1)*x_(3)(3)-39*x_(1)(3)*x_(2)(3)*x_(3)(1)^2

+39*x_(2)(1)*x_(2)(2)*x_(2)(3)*x_(3)(2)
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+78*x_(2)(1)*x_(2)(3)*x_(3)(2)*x_(3)(3)

+(53*pi-273*e)*x_(2)(1)*x_(2)(3)*x_(3)(2)+39*x_(2)(1)*x_(3)(3)^3

+(53*pi-273*e)*x_(2)(1)*x_(3)(3)^2+(-20*pi^2-371*pi*e)*x_(2)(1)*x_(3)(3)

+(140*pi^2*e)*x_(2)(1)-39*x_(2)(2)^2*x_(2)(3)*x_(3)(1)

-39*x_(2)(2)*x_(2)(3)*x_(3)(1)*x_(3)(3)

+(-53*pi+273*e)*x_(2)(2)*x_(2)(3)*x_(3)(1)-39*x_(2)(3)^2*x_(3)(1)*x_(3)(2)

-39*x_(2)(3)*x_(3)(1)*x_(3)(3)^2+(-53*pi+273*e)*x_(2)(3)*x_(3)(1)*x_(3)(3)

+(20*pi^2+371*pi*e)*x_(2)(3)*x_(3)(1)

I_b[2]=39*x_(1)(2)*x_(2)(3)*x_(3)(1)+39*x_(1)(3)*x_(2)(1)*x_(3)(2)

-39*x_(1)(3)*x_(2)(2)*x_(3)(1)+39*x_(1)(3)*x_(3)(1)*x_(3)(3)

+39*x_(2)(2)*x_(2)(3)*x_(3)(2)+78*x_(2)(3)*x_(3)(2)*x_(3)(3)

+(53*pi-273*e)*x_(2)(3)*x_(3)(2)+39*x_(3)(3)^3+(53*pi-273*e)*x_(3)(3)^2

+(-20*pi^2-371*pi*e)*x_(3)(3)+(140*pi^2*e)

I_b[3]=39*x_(1)(2)*x_(2)(1)+39*x_(1)(3)*x_(3)(1)+39*x_(2)(2)^2

+39*x_(2)(2)*x_(3)(3)+(53*pi-273*e)*x_(2)(2)+39*x_(2)(3)*x_(3)(2)

+39*x_(3)(3)^2+(53*pi-273*e)*x_(3)(3)+(-20*pi^2-371*pi*e)

I_b[4]=39*x_(1)(1)+39*x_(2)(2)+39*x_(3)(3)+(53*pi-273*e)

From this it is easily verified that the reduced Gröbner bases of Iα and Iβ are identical, so that A ∼d B as
expected.

6.2. Example with d = 2. This is the example where we work with actual tuples of matrices. Choose n = 2 and
take Q as ground field for our polynomial ring. Take now the tuples to be:

A = (A1, A2) =
((

1 −2
−4 5

)
,
(

1 2
3

13
21

34
55

))
and

B = (B1, B2) =
(( −2

3
6
5

−7
8

−62
8

)
,
(

0 −71
4

−34
9

77
8

))
.

The outputs in this case are:

> I_a;

I_a[1]=3465*x_(2)(1)(2)*x_(2)(2)(1)+3465*x_(2)(2)(2)^2-5607*x_(2)(2)(2)+712

I_a[2]=55*x_(2)(1)(1)+55*x_(2)(2)(2)-89

I_a[3]=3465*x_(1)(2)(1)^2*x_(2)(2)(2)^2-5607*x_(1)(2)(1)^2*x_(2)(2)(2)

+712*x_(1)(2)(1)^2-6930*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(1)*x_(2)(2)(2)

+5607*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(1)

+20790*x_(1)(2)(1)*x_(2)(2)(1)*x_(2)(2)(2)-32997*x_(1)(2)(1)*x_(2)(2)(1)

+3465*x_(1)(2)(2)^2*x_(2)(2)(1)^2-20790*x_(1)(2)(2)*x_(2)(2)(1)^2

-10395*x_(2)(2)(1)^2

I_a[4]=1155*x_(1)(2)(1)^2*x_(2)(1)(2)

+2310*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(2)-1869*x_(1)(2)(1)*x_(1)(2)(2)

-6930*x_(1)(2)(1)*x_(2)(2)(2)+10999*x_(1)(2)(1)

-1155*x_(1)(2)(2)^2*x_(2)(2)(1)+6930*x_(1)(2)(2)*x_(2)(2)(1)

+3465*x_(2)(2)(1)

I_a[5]=3465*x_(1)(1)(2)*x_(2)(2)(2)^2-5607*x_(1)(1)(2)*x_(2)(2)(2)

+712*x_(1)(1)(2)-3465*x_(1)(2)(1)*x_(2)(1)(2)^2

-6930*x_(1)(2)(2)*x_(2)(1)(2)*x_(2)(2)(2)+5607*x_(1)(2)(2)*x_(2)(1)(2)

+20790*x_(2)(1)(2)*x_(2)(2)(2)-32997*x_(2)(1)(2)
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I_a[6]=1155*x_(1)(1)(2)*x_(2)(2)(1)+1155*x_(1)(2)(1)*x_(2)(1)(2)

+2310*x_(1)(2)(2)*x_(2)(2)(2)-1869*x_(1)(2)(2)-6930*x_(2)(2)(2)+10999

I_a[7]=x_(1)(1)(2)*x_(1)(2)(1)+x_(1)(2)(2)^2-6*x_(1)(2)(2)-3

I_a[8]=x_(1)(1)(1)+x_(1)(2)(2)-6

and

I_b[1]=72*x_(2)(1)(2)*x_(2)(2)(1)+72*x_(2)(2)(2)^2-693*x_(2)(2)(2)-4828

I_b[2]=8*x_(2)(1)(1)+8*x_(2)(2)(2)-77

I_b[3]=1440*x_(1)(2)(1)^2*x_(2)(2)(2)^2-13860*x_(1)(2)(1)^2*x_(2)(2)(2)

-96560*x_(1)(2)(1)^2-2880*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(1)*x_(2)(2)(2)

+13860*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(1)

-12120*x_(1)(2)(1)*x_(2)(2)(1)*x_(2)(2)(2)+25077*x_(1)(2)(1)*x_(2)(2)(1)

+1440*x_(1)(2)(2)^2*x_(2)(2)(1)^2+12120*x_(1)(2)(2)*x_(2)(2)(1)^2

+8952*x_(2)(2)(1)^2

I_b[4]=480*x_(1)(2)(1)^2*x_(2)(1)(2)+960*x_(1)(2)(1)*x_(1)(2)(2)*x_(2)(2)(2)

-4620*x_(1)(2)(1)*x_(1)(2)(2)+4040*x_(1)(2)(1)*x_(2)(2)(2)-8359*x_(1)(2)(1)

-480*x_(1)(2)(2)^2*x_(2)(2)(1)-4040*x_(1)(2)(2)*x_(2)(2)(1)-2984*x_(2)(2)(1)

I_b[5]=1440*x_(1)(1)(2)*x_(2)(2)(2)^2-13860*x_(1)(1)(2)*x_(2)(2)(2)

-96560*x_(1)(1)(2)-1440*x_(1)(2)(1)*x_(2)(1)(2)^2

-2880*x_(1)(2)(2)*x_(2)(1)(2)*x_(2)(2)(2)+13860*x_(1)(2)(2)*x_(2)(1)(2)

-12120*x_(2)(1)(2)*x_(2)(2)(2)+25077*x_(2)(1)(2)

I_b[6]=480*x_(1)(1)(2)*x_(2)(2)(1)+480*x_(1)(2)(1)*x_(2)(1)(2)

+960*x_(1)(2)(2)*x_(2)(2)(2)-4620*x_(1)(2)(2)+4040*x_(2)(2)(2)-8359

I_b[7]=60*x_(1)(1)(2)*x_(1)(2)(1)+60*x_(1)(2)(2)^2+505*x_(1)(2)(2)+373

I_b[8]=12*x_(1)(1)(1)+12*x_(1)(2)(2)+101

From this it is immediately clear that A ̸∼d B.

7. Open questions

In this last section we collect the questions that have arisen during this project together with some points
where improvements or work can be done. We start by the ones coming from the theoretical side of the paper:

• Is Jα already radical for all α? If this is the case, we can directly implement the Gröbner Cover to
the solution of our problem instead of using the radical Gröbner Cover and the radical Gröbner Patch.

• General existence of the radical Gröbner Cover. With the existence of the radical Gröbner Cover
we don’t require the radical Gröbner Patch. Moreover a canonical version of the radical Gröbner Cover
(in case of existing) would also be desired.
• Improvements of the obtained bounds.

On the implementation of the solution in CAS we have:

• Implementation of the radical Gröbner Cover (if existing) in Singular. In case that this is done,
it will be technically possible to give a complete description of Fd.

• Optimization of the Singular code.
• Using other CAS to implement the solution of the problem.
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Appendix A. Singular Code

Here we present the Singular code that enables us to develop some of the theory described in this paper
computationally. In order to make use of it, it suffices to copy and paste the full code without any changes. If one
has to slightly modify the code given here, we recommend copying and pasting it in a Notepad, changing it there
and then copying and pasting the Notepad modified version of the code to the Singular terminal.

A.1. The dimensions procedure. The code that follows this paragraph is the one corresponding to the case
when the ground field of our polynomial ring is Q and when the monomial ordering is the lexicographic ordering
for the variables w and z, an elimination ordering. After that we explain how to change this code in order to have
other choices for the ground field and monomial ordering.

proc dimensions(int d, int n)

{if (d==1)

{ring r=0,(w, z_(1..n)(1..n), x_(1..n)(1..n), y_(1..n)(1..n)),

(lp(n^2+1),lp);

setring r;

export(r);

export(d);

export(n);

int i;

int j;

int k;

int c;

matrix Z[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Z[i,j]=z_(i)(j);};}

matrix X[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {X[i,j]=x_(i)(j);};}

matrix Y[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Y[i,j]=y_(i)(j);};}

export(Y);

ideal E = ideal(X*Z-Z*Y);

ideal J = w*det(Z)-1, E;

export(J);}

else

{ring r= 0,(w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(lp(n^2+1),lp);

export(r);

setring r;

export(n);

export(d);

int i;

int j;

int k;

int c;
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matrix Z[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Z[i,j]=z_(i)(j);};}

for (k=1; k<=d; k++)

{matrix X_(k)[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {X_(k)[i,j]=x_(k)(i)(j);};};}

for (k=1; k<=d; k++)

{matrix Y_(k)[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Y_(k)[i,j]=y_(k)(i)(j);};}

export (Y_(k));}

for (k=1; k<=d; k++) {ideal E_(k)= ideal(X_(k)*Z-Z*Y_(k));}

for (k=1; k<=d; k++) {ideal J = w*det(Z)-1, E_(1..k);}

export(J);}}

A.1.1. For an algebraic extension of Q. In order to have an algebraic extension of the rationals as the ground
field we first have to change the lines 3 and 26 for

{ring r=(0, i),(w, z_(1..n)(1..n), x_(1..n)(1..n), y_(1..n)(1..n)),

(lp(n^2+1),lp);

and

{ring r=(0, i) ,(w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(lp(n^2+1),lp);

respectively, where here i will denote the imaginary unit i =
√
−1. Moreover, after each of these lines we will

have to add the minimal polynomial of which the primitive element of the extension is a root of; in our case, the
minimal polynomial is x2 + 1 and the line of code that we have to add after the new lines 3 and 26 is

minpoly = i^2+1;

For the sake of completeness we include the full code for dimensions(d,n); if we want the ground field to be
Q[i]:

proc dimensions(int d, int n)

{if (d==1)

{ring r=(0,i),(w, z_(1..n)(1..n), x_(1..n)(1..n), y_(1..n)(1..n)),

(lp(n^2+1),lp);

minpoly = i^2+1;

setring r;

export(r);

export(d);

export(n);

int i;
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int j;

int k;

int c;

matrix Z[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Z[i,j]=z_(i)(j);};}

matrix X[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {X[i,j]=x_(i)(j);};}

matrix Y[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Y[i,j]=y_(i)(j);};}

export(Y);

ideal E = ideal(X*Z-Z*Y);

ideal J = w*det(Z)-1, E;

export(J);}

else

{ring r= (0,i), (w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(lp(n^2+1),lp);

minpoly = i^2+1;

export(r);

setring r;

export(n);

export(d);

int i;

int j;

int k;

int c;

matrix Z[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Z[i,j]=z_(i)(j);};}

for (k=1; k<=d; k++)

{matrix X_(k)[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {X_(k)[i,j]=x_(k)(i)(j);};};}

for (k=1; k<=d; k++)

{matrix Y_(k)[n][n];

for (i=1; i<=n; i++)

{for (j=1; j<=n; j++) {Y_(k)[i,j]=y_(k)(i)(j);};}

export (Y_(k));}

for (k=1; k<=d; k++) {ideal E_(k)= ideal(X_(k)*Z-Z*Y_(k));}

for (k=1; k<=d; k++) {ideal J = w*det(Z)-1, E_(1..k);}

export(J);}}
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A.1.2. For a transcendental extension of Q. In order to have a transcendental extension of the rationals as the
ground field we only have to change the lines 3 and 26 for

{ring r=(0, pi),(w, z_(1..n)(1..n), x_(1..n)(1..n),

y_(1..n)(1..n)),(lp(n^2+1),lp);

and

{ring r=(0, pi),(w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(lp(n^2+1),lp);

respectively. Here pi is π and thus the resulting ground field would be Q(π), but we could have chosen any other
letter/word such as x representing a variable x, in which case the ground field of the polynomial ring would be
Q(x). Unlike with algebraic extensions, Singular allows us to extend Q with multiple transcendental numbers
over Q, so we could also work over a ground field such as Q(π, x) by replacing lines 3 and 26 by

{ring r=(0, pi, x),(w, z_(1..n)(1..n), x_(1..n)(1..n),

y_(1..n)(1..n)),(lp(n^2+1),lp);

and

{ring r=(0, pi, x),(w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(lp(n^2+1),lp);

respectively.

A.1.3. Changing the monomial order. The monomial ordering is given in the last part of lines 3 and 26 of the
dimensions code. The different options for a monomial ordering in Singular can be found in
https://www.singular.uni-kl.de/Manual/4-0-2/sing_31.htm. For example, if we choose the product degree
reverse lexicographic ordering as an elimination ordering, the codes for lines 3 and 26 would be

{ring r=0,(w, z_(1..n)(1..n), x_(1..n)(1..n), y_(1..n)(1..n)),

(dp(n^2+1),dp);

and

{ring r=0,(w, z_(1..n)(1..n), x_(1..d)(1..n)(1..n),

y_(1..d)(1..n)(1..n)),(dp(n^2+1),dp);

respectively.

A.2. Obtaining Jα. Here we present the commands needed to get the specialized ideal Jα. When we want to
see if two tuples of matrices are in the same ∼d-equivalence class, we will also need to construct a new specialized
ideal Jα corresponding to the second tuple of matrices; as convention, our tuples are always called A and B and
α and βare the vectors representing the entries of these tuples respectively. In order to construct Jβ we only need
to replace every occurrence of A for B and every occurrence of a for b; for the sake of convenience we also append
here the code corresponding to obtain Jβ .

For Jα we have:

https://www.singular.uni-kl.de/Manual/4-0-2/sing_31.htm
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if (d==1)

{int k;

int i;

int j;

for (k=1; k<=size(J); k++)

{poly f_(k)(1)(1) = subst(J[k], Y[1,1], A[1,1]);

for (i=2; i<=n; i++)

{for (j=2; j<=n; j++) {poly f_(k)(i-1)(j) = subst(f_(k)(i-1)(j-1),

Y[i-1,j], A[i-1,j]);};

poly f_(k)(i)(1)= subst(f_(k)(i-1)(n), Y[i,1], A[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(n)(j) = subst(f_(k)(n)(j-1),

Y[n,j], A[n,j]);};

poly f_(k) = f_(k)(n)(n);}

for (k=1; k<=size(J); k++)

{for (i=1; i<=n; i++)

{for (j=1; j<=n; j++){kill(f_(k)(i)(j));}}};}

else

{int k;

int i;

int j;

int c;

for (k=1; k<=size(J); k++)

{for (c=1; c<=d; c++)

{if (c==1)

{poly f_(k)(c)(1)(1) = subst(J[k], Y_(c)[1,1], A_(c)[1,1]);

for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], A_(c)[i-1,j]);};

poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n), Y_(c)[i,1],

A_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =

subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], A_(c)[n,j]);};

poly f_(k)(c+1)(1)(1) = subst(f_(k)(c)(n)(n),

Y_(c+1)[1,1], A_(c+1)[1,1]);}

else

{if (c!=d)

{for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], A_(c)[i-1,j]);};

poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n),

Y_(c)[i,1], A_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =

subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], A_(c)[n,j]);};

poly f_(k)(c+1)(1)(1) = subst(f_(k)(c)(n)(n),

Y_(c+1)[1,1], A_(c+1)[1,1]);}}

if (c==d)

{for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], A_(c)[i-1,j]);};

poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n),

Y_(c)[i,1], A_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =
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subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], A_(c)[n,j]);};

poly f_(k)=f_(k)(c)(n)(n);}}}

for (c=1; c<=d; c++)

{for (k=1; k<=size(J); k++)

{for (i=1; i<=n; i++)

{for (j=1; j<=n; j++){kill(f_(k)(c)(i)(j));}}}};};

int s = size(J);

ideal Ja = f_(1..s);

ideal J_a= groebner(Ja);

kill(Ja);

For Jβ we have:

if (d==1)

{int k;

int i;

int j;

for (k=1; k<=size(J); k++)

{poly f_(k)(1)(1) = subst(J[k], Y[1,1], B[1,1]);

for (i=2; i<=n; i++)

{for (j=2; j<=n; j++) {poly f_(k)(i-1)(j) =

subst(f_(k)(i-1)(j-1),

Y[i-1,j], B[i-1,j]);};

poly f_(k)(i)(1)= subst(f_(k)(i-1)(n), Y[i,1], B[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(n)(j) = subst(f_(k)(n)(j-1),

Y[n,j], B[n,j]);};

poly f_(k) = f_(k)(n)(n);}

for (k=1; k<=size(J); k++)

{for (i=1; i<=n; i++)

{for (j=1; j<=n; j++){kill(f_(k)(i)(j));}}};}

else

{int k;

int i;

int j;

int c;

for (k=1; k<=size(J); k++)

{for (c=1; c<=d; c++)

{if (c==1)

{poly f_(k)(c)(1)(1) = subst(J[k], Y_(c)[1,1], B_(c)[1,1]);

for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], B_(c)[i-1,j]);};

poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n),

Y_(c)[i,1], B_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =

subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], B_(c)[n,j]);};

poly f_(k)(c+1)(1)(1) = subst(f_(k)(c)(n)(n),

Y_(c+1)[1,1], B_(c+1)[1,1]);}

else

{if (c!=d)

{for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], B_(c)[i-1,j]);};
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poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n),

Y_(c)[i,1], B_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =

subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], B_(c)[n,j]);};

poly f_(k)(c+1)(1)(1) = subst(f_(k)(c)(n)(n),

Y_(c+1)[1,1], B_(c+1)[1,1]);}}

if (c==d)

{for (i=2; i<=n; i++)

{for (j=2; j<=n; j++)

{poly f_(k)(c)(i-1)(j) = subst(f_(k)(c)(i-1)(j-1),

Y_(c)[i-1,j], B_(c)[i-1,j]);};

poly f_(k)(c)(i)(1)= subst(f_(k)(c)(i-1)(n),

Y_(c)[i,1], B_(c)[i,1]);};

for (j=2; j<=n; j++) {poly f_(k)(c)(n)(j) =

subst(f_(k)(c)(n)(j-1), Y_(c)[n,j], B_(c)[n,j]);};

poly f_(k)=f_(k)(c)(n)(n);}}}

for (c=1; c<=d; c++)

{for (k=1; k<=size(J); k++)

{for (i=1; i<=n; i++)

{for (j=1; j<=n; j++){kill(f_(k)(c)(i)(j));}}}};};

int s = size(J);

ideal Jb = f_(1..s);

ideal J_b= groebner(Jb);

kill(Jb);
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