CROSS-SECTIONS OF DIVISIBLE ABELIAN o-GROUPS VIA TAME PAIRS

RICARDO PALOMINO PIEPENBORN

ABSTRACT. In this note several equivalent characterizations are given for a divisible subgroup A’ C T of a
divisible group I" to be the image of a section of a given surjective o-group homomorphism f : I' —» A using the
order-theoretic notion of tameness (equivalently, relative Dedekind completeness). The note concludes with an
application of these characterizations to real closed valued fields.

Throughout this note all groups are abelian; moreover, an o-group is a totally ordered (abelian) group. If A
is a ring, then A* denotes its underlying group of multiplicative units, and if A is an o-group, then define
A0 :={ae€ Ala>0}.

1. TAME PAIRS OF DENSE LINEAR ORDERS

Definition 1.1 (1.12 in [DL95], or [Pil94]). Let (4,<) C (B,<) be an embedding of dense linear orders.
Say that A is tame in B (or A is Dedekind complete in B) if for every A-bounded b € B (that is, for every
bech.p(A):={V € B|Jaj,as € A such that a3 <V < ay}) there exists a € A such that one of the following
items holds true:

(i) b=a, or
(ii) b < a and there is no a’ € A such that b < a’ < a, or
(i) @ < b and there is no a’ € A such that a < o’ <b.

Remark 1.2. Let (A, <) C (B, <) be an embedding of dense linear orders. If A is tame in B, then it follows form
the fact that (A, <) is a dense linear order that for every A-bounded b € B (that is, for every b € c.h.5(A)) there
exists a unique a € A such that exactly one of the items (i) - (iii) in Definition 1.1 holds for a and b.

Definition 1.3. Let (A, <) C (B, <) be an embedding of dense linear orders and suppose that A is tame in B.
The standard part map associated with the tame pair A C B is the map stﬁ : c.h.g(A) — A given by setting
stB(b) (b € c.h.g(A)) to be the unique element in A for which one of the items (i) - (iii) in Definition 1.1 hold
for stZ(b) and b. If A and B are clear from the context, then write st := st5.

Remark 1.4. Let (A, <) C (B, <) be an embedding of dense linear orders and suppose that A is tame in B.
Then:

(i) st(a) =a for all a € A C c.h.g(A).
(ii)) If b € c.h.p(A) \ A and b < st(b), then for all a € A such that a < b there exists ¢’ € A such that
a<a <b.

Lemma 1.5. Let (A, <) C (B, <) be an embedding of dense linear orders. The following are equivalent:

(i) A is tame in B.
(ii) For every b € B, the set {a € A | a < b} has a supremum in AU {£oo}.
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Suppose further that A and B are o-groups and that A is a subgroup of B. Then (i) and (ii) are equivalent to:

(i4i) For all b € c.h.g(A) there exists a € A such that |b—a| < a’ for all ' € A>°.
Proof. Straightforward from the definitions. O

1.1. Tame pairs of o-minimal structures. If (A4, <,...) < (B, <,...) is an elementary extension of o-minimal
structures ([Dri98]) and D C A™ is an A-definable subset of A, then write Dp for the definable subset in B™ given
by the same formula defining D in A™. Moreover, say that b = (by,...,b,) € B" is A-bounded if b; is A-bounded
for all i € {1,...,n}, and if A is tame in B and b € B" is A-bounded, write st(b) for (st(by),...,st(b,)).

Lemma 1.6. Let (A, <,...) be o-minimal and tame in an elementary extension (B, <,...). Let f: D — A be
a continuous A-definable function on an A-definable set D C A", and let b € Dp be A-bounded with st(b) € D.
Then fg(b) is A-bounded and st(fg(b)) = f(st(D)).

Proof. See 1.13 in [DL95]. O

2. CROSS-SECTIONS OF DIVISIBLE ABELIAN o-GROUPS VIA TAME PAIRS

Definition 2.1 (pp. 48 & 49 in [Fuc70]). Let T’y be a subgroup of a group (T, +,0).

(i) A subgroup A C T is I'g-high if A is a subgroup maximal for subset inclusion in I with ANTy = (0); in
particular, A +T'o = A ® Ty.
(ii) Tg is an absolute direct summand of T'if T' = A @ T’y for every T'p-high subgroup A C T

Proposition 2.2. Let Ty be a divisible subgroup of a group (T',+,0). Then Ty is an absolute direct summand
on .

Proof. See [Fuc70, Theorem 21.2]. O

Corollary 2.3. Let f: T' —» A be a surjective group homomorphism and A" C T be a subgroup. Consider the
following statements:

(i) The map fiar = A — A is a group isomorphism; in particular, (fiar)™' : A — T is a section of
f:T— Al
(ii) T = A" @ ker(f).
(iii) A’ is a subgroup mazimal for subset inclusion in T with A’ Nker(f) = (0).

Then (i) < (ii) = (iil), and if ker(f) is divisible, then all statements are equivalent.

Proof. (i) = (ii). Since fja+ is injective, A’ Nker(f) = 0, hence A’ +ker(f) = A’ @ker(f). Pick v € T'; since fias

is surjective, there exists ¢’ € A’ with f(0") = f(v), hence v — ¢’ € ker(f) and thus v = ¢+ (y—9") € A’ @ker(f).
(ii) = (i). Obvious.

(ii) = (iii). Assume for contradiction that item (iii) does not hold and let A’ C IV C I" be a subgroup maximal
for subset inclusion in I' with IV N ker(f) = (0). Pick v/ € IV \ A’; by assumption, there exist ¢’ € A’ and
0 # n € ker(f) such that v/ = §’ + 7, therefore 0 £ n =" — ¢ € I" Nker(f), a contradiction.

(i) = (ii). A’ is ker(f)-high by assumption; since ker(f) is divisible, it is an absolute direct summand of T’
by Proposition 2.2, hence I' = A’ @ ker(f). O
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Theorem 2.4. Let I" and A be divisible o-groups, f : T' —» A be a surjective o-group homomorphism, and
A" CT be a divisible subgroup (in particular, (A’, <) is a dense linear order). The following are equivalent:

(i) The map fiar : A — A is an o-group isomorphism; in particular, (fia)™' : A — T is a section of
the o-group homomorphism f : T —» A.

(ii) T' = A’ @ ker(f).

iii) A’ is a subgroup mazimal for subset inclusion in T with A’ Nker(f) = (0).

iv) A’ is tame and cofinal in T, and ker(f) = {y € T | st(vy) = 0}, where st : T' —» A’ is the standard part
map associated with the tame pair A’ CT.

(v) A’ is tame and cofinal in T, and f(v) > 0 if and only if st(y) > 0 for all v € T, where st : I' —» A’ is
the standard part map associated with the tame pair A’ C T.

In particular, if any of the items (i) - (v) hold, then:

- A’ is tame and cofinal in T,
- st(7y) is the unique element in A" such that f(st(y)) = f(vy) for ally €T, and
- the standard part map st : T' —» A’ associated with the tame pair A’ C T is a retract of A’ CT.

Proof. (i) < (ii) < (iii). Since f is a surjective o-group homomorphism, ker(f) is convex in I'; and since convex
subgroups of divisible o-groups are divisible, the equivalence of items (i) - (iii) follows from Corollary 2.3.

(i) = (iv). To prove that A’ is cofinal in I, pick v € I’ with 0 < 4. Since (A, <) has no end points, there exists
§ € A with f(v) < d, and since fja+ is surjective, there exists 6’ € A’ such that f(0") = §; but then v < §’, as
otherwise ¢’ <+ would imply that § = f(¢') < f(7), hence A’ is cofinal in I and thus every v € ' is A’-bounded.
To prove that A’ is tame in T, pick any 7 € I' and assume without loss of generality that 0 < ~ (otherwise
replace v by —v). Since fa+ is bijective by assumption, there exists a unique ¢’ € A’ such that f(y) = f(d'), i.e.,
0" — v € ker(f). Note that 0 < ¢’; otherwise, ¢’ < 0 implies that f(y) = f(6’) < f(0) since f is order-preserving
and fia/ is injective, and 0 < v implies f(0) < f(7), giving the required contradiction. It is now claimed that
st(y) =0’ If v € A/, then v = §' by choice of 6’ € A" and thus st(y) = st(§’) = ¢’; if v ¢ A/, then there are two
possible cases:

- Case 1: v < ¢’. Assume for contradiction that there exists 0} € A’ such that v < 67 < ¢’. Then
0 <] —v < —~, and since ker(f) is convex in I' and 6’ — v € ker(f), it follows that §] — v € ker(f),
hence f(81) = f(y) = f(¢'), contradicting uniqueness of ¢’ € A'.

- Case 2: § < . Assume for contradiction that there exists 07 € A’ such that §' < 0] < ~7; then
0" — v < 0] —~v <0, and since ker(f) is convex in I' and 6" — v € ker(f), it follows that §; — v € ker(f),
hence f(8]) = f(v) = f(¢’), contradicting uniqueness of §' € A'.

Therefore A’ is tame in I'; in particular, this shows that for every v € T', st() is the unique element in A’ such
that f(v) = f(st(v)), i.e., st(7) is the unique element in A’ such that 1, := v — st(v) € ker(f), hence
f() =0 <= f(st(y) +17) =0 <= [(st(7)) =0 <= st(y) =0,
where the last equivalence follows from the assumption that f;a+ is injective.
(iv) = (i). ker(f) = {y € I | st(y) = 0} implies that A’ Nker(f) = (0), and thus f;a+ is injective. To show
that fias is surjective it suffices to prove that f(y) = f(st(y)) for all v € I' (note that since A’ is cofinal in T,
st(y) exists for all v € T'); since ker(f) = {y € " | st(y) = 0}, it suffices in turn to show that st(y —st(y)) =0

for all y € I". If v € A/, then v = st(7) and thus f(y) = f(st(v)). Let now v € I'\ A/, assume without loss of
generality that 0 <+ (otherwise replace v by —v), and assume for contradiction that st(y — st(y)) # 0.

- Case 1: 0 <y < st(y). Then v — st(y) < 0, and there are 2 possible subcases:
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- Subcase 1.1: st(y — st(v)) < v —st(y) < 0. In this case, there must exist &' € A’ such that
v —st(y) < § <0, hence v < & + st(y) < st(y) and &' + st(y) € A’ is a contradiction to tameness
of A"inT.

- Subcase 1.2: vy —st(y) < st(y —st(y)) < 0. In this case, v < st(y) + st(y — st(y)) < st(y) and
st(y) + st(y —st(y)) € A’ is a contradiction to tameness of A’ in T'.

- Case 2: 0 <st(y) <~. Then 0 < 7 — st(vy) and there are 2 possible subcases:

- Subcase 2.1: 0 < st(y —st(y)) < v —st(y). In this case st(y) < st(y) + st(y — st(y)) < v and
st(y) + st(y —st(y)) € A’ is a contradiction to tameness of A’ in T.

- Subcase 2.2: 0 < v — st(y) < st(y — st(v)). In this case, there must exist 6’ € A’ such that
0 < & < —st(y), hence st(y) < & + st(y) < v and §’ + st(y) € A’ is a contradiction to tameness
of A”inT.

In each of the cases above a contradiction is reached, hence st(y — st(v)) = 0 for all v € T, i.e., f(v) = f(st(y))
for all v € T, and thus fjar : A" — T is surjective, as required.

(iv) & (v). One direction is clear, so suppose that item (iv) holds, i.e., f(y) = 0 if and only if st(y) = 0 for
all v € T; it therefore suffices to show that f(y) > 0 if and only if st(v) > 0 for all v € T'. Pick v € T.

- Assume for contradiction that f(v) > 0 and st(y) < 0. Since st(y) = 0 implies f(y) = 0, it must be the
case that st(y) < 0, and thus v < 0, as otherwise st(y) < 0 < v contradicts tameness of A’ in I'. On the
other hand, 0 < f() implies that 0 < v, as otherwise v < 0 implies f(v) < 0; therefore v = 0 and thus
f(v) = f(0) > 0, a contradiction.

- Assume for contradiction that st(v) > 0 and f(v) < 0. Since f(v) = 0 implies st(v) = 0, it must be the
case that f(v) < 0, and thus v < 0, as otherwise 0 <  implies 0 < f(). On the other hand, st(y) > 0
implies that v > 0, as otherwise v < 0 < st(~y) contradicts tameness of A’ in T'; therefore v = 0 and thus
st(y) = st(0) > 0, a contradiction.

To conclude, suppose that any of the items (i) - (v) hold, so that A’ is tame and cofinal in T', and fiar : A" — A
is an o-group isomorphism; then it follows from the proof of the implication (i) = (iv) that st(vy) is the unique
element in A’ such that f(st(y)) = f(v) for all v € T, hence st(y) = (fia’) ' (f(7)) for all v € T' and thus
st = (fiar) "o f is a surjective o-group homomorphism such that stjas = idas, therefore st : I' — A’ is a retract
of A’ CT. O

Proposition 2.5. Let (I',+) and (A, +) be divisible o-groups (in particular, (A, <) is a dense linear order) such
that A CT'. Suppose that A is tame and cofinal in T, and let st : ' —» A be the standard part map associated
with the tame pair A CT'. Then st : I' —» A is a surjective o-group homomorphism; in particular, st : I' —» A
is a retract of A CT.

Proof. If v € T is such that v > 0, then st(y) > 0, as otherwise st(y) < 0 < = contradicts tameness of A in
T, hence st : I' —» A is order-preserving. Since the £°¢ := {+, —, 0, <}-theory of divisible o-groups is model
complete and o-minimal, A C T is an elementary extension of o-minimal £°%-structures; since A and I' are
topological groups with respect to the order topology (i.e., + and — are continuous functions) it follows from
Lemma 1.6 that st(vy; + v2) = st(y1) + st(y2) for all 71,2 € T’ (here cofinality of A in T' is deployed), therefore
st : I' —» A is a surjective o-group homomorphism such that st;o = ida, hence it is a retract of A CT'. O

3. AN APPLICATION TO REAL CLOSED VALUED FIELDS

Recall that a real closed valued field is a valued field (K, v) (see [EP05] or [ADH17, Section 3]) such that K
is a real closed field and v is a conver valuation (also called order-compatible valuation) on K, that is, 0 < a < b
implies v(b) < wv(a) for all a,b € K; equivalently, a real closed valued field is a pair (K,V) where K is a real
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closed field and V is a convex subring. If (K, v) is a real closed valued field, then write V, := {a € K | v(a) > 0}
for its corresponding valuation ring.

Corollary 3.1. Let (K,v) be a real closed valued field with value group T' and G C K>° be a divisible subgroup
(in particular, (G, <) is a dense linear order). The following are equivalent:

(1) G is a monomial group of (K,v), that is, the map vic : G — T is a group isomorphism; in particular,
(v1g) "1 : T — K>° is a section of the group homomorphism v;x>o : K% — T.

( ) K>O G- ker( K>0)

(iii) G is a subgroup mazimal for subset inclusion in K>° with G Nker(v;x>0) = (1).

(iv) G is tame and cofinal in K°, and ker(vg>0) = {r € K9 | st(r) = 1}, where st : K> — G is the
standard part map associated with the tame pair G C K>0.

(v) G is tame and cofinal in K>°, and v(r) > 0 if and only if st(r) < 1 for allr € K=Y, wherest : K> — G
is the standard part map associated with the tame pair G C K9,

(vi) G is tame and cofinal in K>°, and V,, = {a € K | a = 0 orst(|a|) < 1}, where st : K% — G s the
standard part map associated with the tame pair G C K>°

In particular, if any of the items (i) - (vi) hold, then:

- G is tame and cofinal in K9,
- st(r) is the unique element in G such that v(st(r)) = v(r) for allr € K>°, and
- the standard part map st : K>° —» G associated with the tame pair G C K>° is a retract of G C K>°.

Proof. Since (K,v) is a real closed valued field, K~° and T' are divisible o-groups and the composite map
(=) ovig>0 : K?% - T — I'°P is a surjective o-group homomorphism such that ker((—) o v;x>0) = ker(v;x>0),
and thus the equivalence of items (i) - (v) follows from Theorem 2.4; moreover, the equivalence of items (v) and
(vi) is clear since V,, = {a € K | v(a) > 0} and v(a) = v(—a) for all a € K. O

Example 3.2. Let K be a real closed field and I" be a divisible o-group. Then the field of Hahn series K ((T")) :=
K((z")) is a real closed valued field with value group I' and z' := {27 | v € T'} is a divisible subgroup of
K((I'))>° such that v},r : 21" — I' is a group isomorphism; therefore z' is tame in K ((I'))>° and st(r) = z*(")
for all r € K((T'))>° by Corollary 3.1.

Given a real closed valued field K, one can therefore identify the monomial groups of K with certain tame and
cofinal divisible subgroups of K>° by Corollary 3.1. Conversely, order-compatible valuations on K are induced
by certain tame and cofinal divisible subgroups of K>°:

Lemma 3.3. Let K be a real closed field and G C K>° be a tame and cofinal divisible subgroup. The following
are equivalent:

(i) The map vg : K* —» G°P given by vg(a) := st(|a]) is an order-compatible valuation on K ; in particular,
G is a monomial group of the real closed valued field (K,vg), and the corresponding convex valuation
ring is Vg := {0} U {a € K* | st(|a|) < 1}.

(i) st(2) =1
(iii) st(2) < 1.

Proof. (i) = (ii). Since vg is a valuation on K, the group of units of its corresponding valuation ring Vg is
Vi ={ae K* |vg(a) =1} = {a € K* | st(]a]) = 1}, and since 2 € Vg, (ii) follows.

(ii) = (iii). Clear.
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(iii) = (i). By choice of K and G, it follows from Proposition 2.5 that the standard part map st : K~ — G
is a surjective morphism of o-groups, and thus vg : (K*,:) — (G°P,-) is a surjective group homomorphism
such that a < b in K>% implies vg(b) < vg(a) in G°P, so it remains to show that for all a,b € K* with a # —b,
va(a+b) > min{vg(a),ve(b)} in GP, i.e., st(la+b|) < max{st(|a|),st(]b])} in G. Pick a,b € K* with a # —b and
assume without loss of generality that |a| < ||, so that max{st(|al|),st(|b])} = st(]b]); then |a+b| < |a|+b] < 2]b],
therefore st(|a 4 b]) < st(2)st(]b|) < st(|b]), as required. O

REFERENCES

[ADH17] Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven. Asymptotic differential algebra
and model theory of transseries. Vol. 195. Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 2017, pp. xxi+849.

[DL95] Lou van den Dries and Adam H. Lewenberg. “T-convexity and tame extensions”. In: J. Symbolic Logic
60.1 (1995), pp. 74-102.
[Drigg] Lou van den Dries. Tame topology and o-minimal structures. Vol. 248. London Mathematical Society

Lecture Note Series. Cambridge University Press, Cambridge, 1998, pp. x+180.

[EPO05] Antonio J. Engler and Alexander Prestel. Valued fields. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 2005, pp. x+205.

[Fuc70] L. Fuchs. Infinite Abelian Groups. Volume 1. Academic Press, 1970.

[Pil94] Anand Pillay. “Definability of types, and pairs of O-minimal structures”. In: J. Symbolic Logic 59.4
(1994), pp. 1400-14009.

THE UNIVERSITY OF MANCHESTER, DEPARTMENT OF MATHEMATICS, OXFORD ROAD, MANCHESTER, M13 9PL, UNITED KINGDOM
Email address:

URL:


mailto:ricardo.palomino@rjpp.net
http://www.rjpp.net

	1. Tame Pairs of Dense Linear Orders
	1.1. Tame pairs of o-minimal structures

	2. Cross-Sections of Divisible Abelian o-Groups via Tame Pairs
	3. An Application to Real Closed Valued Fields
	References

